COM-3504 Dual Analog <-> Digital Conversions

Key Features

Com Block

- High-speed Digital to Analog and Analog-to-Digital Conversions:
 - o Dual 16-bit 250 Msamples/s DACs
 - o Dual 12-bit 150 Msamples/s ADCs
- Optimized for high-throughput interface with ComBlock FPGA/ARM/DDR2 development platforms.
- Output filtering for image rejection
- Monitoring & Control over USB.
- Only single +5V_{DC} supply required. Connectorized 3"x 3" module for ease of prototyping

For the latest data sheet, please refer to the **ComBlock** web site: <u>comblock.com/com3504.html</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please referto <u>comblock.com/product_list.html</u>

Typical Applications

Data acquisition / Arbitrary waveform generation

UHF Transceiver

Block Diagram

Electrical Interface

Inputs / Outputs

40-pin Analog	Definition
I/O	
RXx_P / RXx_N	Channelx differential inputs. (_P for +, _N for -). 500 Ohm input impedance. Full 12-bit ADC conversion range: 1.25, 1.5, 1.75 or 2.0Vpp differential, software controlled (half on each RXx P and RXx_N signal).
	The signals are internally DC-biased at 0.9V with 1KOhm pull-up/pull- down resistors. Use AC or DC coupling. When using DC coupling, the recommended common mode voltage is 0.4 to 1.3V.
	Channel index <i>x</i> range: 1 to 2
$TXx_P /$	Channelx differential outputs. (_P for

TXx_N	+, _N for -). Full range: 2.0Vpp differential, half on each TXx_P and TXx_N signal.
	DC bias (common-mode voltage): $0.5V_{DC}$
	Output impedance 100 Ohm differential, 50 Ohm single-ended.
	Channel index <i>x</i> range: 1 to 2
AUX_DAC1 AUX_DAC2	Analog output signals. Range: $0 - 3.3$ V.
	Typically used for controlling the gain of external RF front-end transmitter and/or receiver.
AUX_ADC	Analog input signals, multiplexed into two auxiliary ADCs.
	Typically used for monitoring the levels of external RF front-end
	transmitter and/or receiver.
D_CNTRL(5:1)	Digital control signals. These signals
	2

	are passed through between the 98-pin
	Jo connector and the 40-pin JS
	connector.
	LVTTL 0 – 3.3V.
SMA Analog	Definition
I/Os	
RXx	Channelx single-ended ADC input.
	AC-coupled.
	Full-scale input: 1.25 Vpp.
	Maximum frequency: 200 MHz.
	Channel index <i>x</i> range: 1 to 2
TXx	Channelx single-ended DAC output.
	Full range 1.0Vpp.
	DC bias (common-mode voltage):
	$0.5 V_{DC}$
	Output impedance 50 Ohm.
	Channel index x range: 1 to 2

Digital Interface	Definition
ADC_CLKIN_P	ADC sampling clock input.
ADC_CLKIN_N	Sets the ADC sampling rate.
	LVCMOS/LVDS/LVPECL
	differential signal.
	150 MHz max.
	20 MHz min.
	In IF undersampling applications, the
	clock jitter must be kept significantly
	below 3ps.
	Index x is 1 or 2
ADCx_DOUT[13:2]	ADCx digital samples output.
	12-bit unsigned (also known as
	"offset binary") format.
	The two least significant bits (1:0)
	are unused (reserved for future use).
	0x0000: lowest output level
	0x3FFF: highest output level
	$0x1FFF$ or $0x2000 \approx$ center level
	CMOS 0 – 3.3V.
	Read at the rising edge of
	ADCx_SAMPLE_CLK_OUT.
ADCx_SAMPLE_	Sampling clock output. Pinpoints the
CLK_OUT	center of the ADCx_DOUT bits for
	reclocking at the receiving end.
	CMOS 0 – 3.3V.
DAC CLKIN P	DAC sampling clock input.
DACCLKINN	Sets the DAC sampling rate.
	0-3.3V LVCMOS differential signal.
	250 MHz max, no min.
DACx_DIN[15:0]	DACx digital samples input.
	16-bit unsigned (also known as
	"offset binary") format.
	0x0000: lowest input level
	0xFFFF: highest input level
	$0x7FFF$ or $0x8000 \approx$ center level
	CMOS 0 – 3.3V.
	Read at the rising edge of
	ADCx SAMPLE CLK OUT.

AUX_SPI[5:1]	SPI interface to control the two auxiliary DACs and ADC in real- time. See AD5621 serial 12-bit DAC
	specifications.
	See AD/2/6 serial 12-bit ADC
	specifications.
Other Interfaces	Definition
USB Monitoring &	Mini-USB connector
Control	Type AB
	Full speed / Low Speed
Power Interface	$4.75 - 5.5 V_{DC}$; Terminal block

Absolute Maximum Ratings

Supply voltage	-8V min,
	+6.5V max
ADC input signals	-0.3V min, +2.1V max
Other input signals	-0.3V min, +3.6V max

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

- USB (requires a mini-USB cable)
- or connections via adjacent ComBlocks:
 - USB
 - TCP-IP/LAN,
 - Asynchronous serial (DB9)
 - PC Card (CardBus, PCMCIA).

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-3504 is to use the **ComBlock Control Center** software supplied with the module on CD. In the ComBlock Control Center window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-3504 module to be configured and click the *Settings* button to display the *Basic Settings* window shown below.

COM3504 Dual Analog <-> Digital Conversions Basic Settings
Dual ADC
ADC1 power down
ADC2 power down Full-range ADC input (differential): 1.25Vpp
Dual DAC
DAC1 power down
I/Q Modulator Calibration
DAC1/DAC2 [I/Q] Voltage gains balance: 0 dB
DAC1 DC offset: -100 mV
DAC2 DC offset: 100 mV
Clear Calibration
Apply Ok Advan Cancel

Basic Settings Window

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

The module configuration parameters are stored in non-volatile memory. All control registers are read/write. Undefined control registers or register bits are for backward software compatibility and/or future use. They are ignored in the current firmware version.

High-speed dual	ADC configuration
Parameters	Configuration
ADC1 Power-	Minimize ADC1 power consumption.
down	0 = normal operation
	1 = ADC1 power down
	REG0(0)
ADC2 Power-	Minimize ADC2 power consumption.
down	0 = normal operation
	1 = ADC2 power down
	REG0(1)
ADCs Output	0 = normal operation
Test Mode	1 = generate alternating checkerboard
	pattern at the ADCs outputs. The
	ADCs inputs are ignored while in test
	mode.
	REG0(2)
ADC input	Select input dynamic range for full
dynamic range	range ADC output:
	00 = 1.25Vpp differential
	01 = 1.50Vpp differential
	10 = 1.75Vpp differential
	11 = 2.00Vpp differential
	Fxample1
	One single-ended 1 25Vpp signal at
	the SMA input connector -> select 00
	the binn input connector + select of
	Example 2:
	Two differential signals, 1Vpp each
	(2Vpp differential) at the 40 pin
	connector -> select 11
	REG0(5:4)

ADC sampling	Delay the
clock delay	ADCx SAMPLE CLK OUT signals
adjustmentS	by 2500 ps × register value/31. The
uajasanento	numeros is to conter the rising edge of
	purpose is to center the rising edge of
	the sampling clock at the very center
	of the ADC bits.
	REG1(4:0) ADC1 SAMPLE CLK OUT
	$\operatorname{REG2}(4:0)$ ADC2 SAMPLE CLK OUT
D !	DO(27 control provinter
Direct access to A	AD9627 control registers
(Advanced) See	AD9627 specifications
ADC control	Lets the user write a specific byte to
register data	the AD9627 address specified below.
C	REG7: AD9627 command data
ADC control	AD0627 control register address
ADC control	AD9027 control register address.
register address	REG8: address bits /:0
	REG9(1): address bit 8
Enable write to	0 = write disabled
AD9627 control	1 = write enabled
register	The command is sent to the $\Delta D9627$
register.	upon (ra) writing to this control
	upon (re-)writing to this control
	register.
	REG9(7)
High-speed dual	DAC configuration
Parameters	Configuration
DAC1 Power-	Minimize DAC1 power consumption
down	0 = normal operation
down	
	I = DACI power down
	REG10(0)
DAC2 Power-	Minimize DAC2 power consumption.
down	0 = normal operation
	1 = DAC2 power down
	REG10(1)
Duel DAC fine o	utput calibration
Dual DAC IIIe o	
DACI gain	DACI current/voltage gain.
	Nominal value for 20mA / 1Vpp
	output is 0x1F9
	REG11(7:0): LSB
	REG12(2:0): MSbs
DAC1 DC biog	Adjusts the DAC1 output so as to
DACT DC DIas	Aujusis me DACT output so as to
correction	minimize carrier feedthrough
	(leakage) in a subsequent IQ
	modulator. This calibration should be
	performed once in tandem with the IQ
	modulator. Corrections are typically
	less than $\pm 5 \text{mV}$
	10 bit unsigned corresponds to
	0-022 5 V
	UXU33: 5 mV correction
	0x000: 0.0 mV correction
	REG13(7:0): LSB
	REG14(2:0): MSbs
DAC1 DC bias	0 = current sourced (nominal)
direction	1 = current sinked
uncenon	I = current shiked
	KEG14(6)
	Correction sign
DACT DC bias	Concetion sign.
side	0 = P side corrected
side	0 = P side corrected 1 =N side corrected

DAC2 gain	DAC2 current/voltage gain.
	Nominal value for 20mA / 1Vpp
	output is 0x1F9
	REG15(7:0): LSB
	REG16(2:0): MSbs
DAC2 DC bias	Adjusts the DAC2 output
correction	10-bit unsigned corresponds to
	Same format as DAC1 DC bias
	correction.
	REG17(7:0): LSB
	REG18(2:0): MSbs
DAC2 DC bias	0 = current sourced
direction	1 = current sinked
	REG18(6)
DAC2 DC bias	0 = P side corrected
side	1 =N side corrected
	REG18(7)

Monitoring 🚺

Monitoring the status of the COM-3504 is performed by viewing the Status window in ComBlock Control Center. All register values are displayed in hexadecimal, but other formats are displayed by hovering over the hex value with the cursor.

Custom applications can monitor module status again, by using the <u>ComBlock API</u>.

Parameters	Monitoring
Internal Power Supply	0 = Normal Operation
Fault	1 = Fault Condition
	SREG0(0): D_+4.8V
(see schematics for	SREG0(1): D_+3.3V
rejerence)	SREG0(2): DACA_+3.3V
	SREG0(3): D_+2.0V
	SREG0(4): DAC_+1.8V

Operations

Clock Distribution

Independent sampling clocks are supplied externally for the dual ADCs and dual DACs as the COM-3504 does not include any oscillator.

AD9627 ADC Configuration

The AD9627 is an intelligent ADC with many control and monitoring features. To simplify the user task, this board's software is written with three levels of controls:

- a) Simple configuration of a few key parameters in control registers REG0/1/2.
- b) Default setting of the other ADC parameters to the following default values:
- Output type: CMOS
- Output format: unsigned (offset binary)
- Duty cycle stabilizer enabled
- ADC outputs enabled
- Output clock polarity: rising edge
- ADC CLKIN frequency division: 1:1
- VREF = 1V (for 2Vpp differential input)
- c) Indirect access to all AD9627 features through the ComBlock API, using control registers REG1/2/3. For details, see www.analog.com/static/importedfiles/data_sheets/AD9627.pdf

A software reset is sent to the ADC at power-up or following a user-generated @xxxRST command.

AD9747 DAC Configuration

The AD9747 is an intelligent ADC with many control and monitoring features. To simplify the user task, this board's software is written with three levels of controls:

- a) Simple configuration of a few key parameters in control registers REG10/11.
- b) Default setting of the other DAC parameters to the following default values:
- Dual-port mode
- Input format: unsigned
- DAC1 Gain: 20 mA full scale current
- DAC2 Gain: 20 mA full-scale current
- c) Indirect access to all AD9747 features through the ComBlock API, using control registers REG5/6. For details, see www.analog.com/static/importedfiles/data_sheets/AD9741_9743_9745_974 <u>6_9747.pdf</u>

A software reset is sent to the DAC at power-up or following a user-generated @xxxRST command.

DACs Calibration

The dual DACs can be connected directly to an IQ modulator. In this case, minor impairments can cause large changes in Error Vector Magnitude (EVM) performance. The impairments are primarily:

- DC offset
- I/Q gain imbalance
- Phase error

This module includes features to calibrate out the first two impairments. The calibration procedure is a time-consuming iterative and frequency-dependent process that can only be justified if the out-of-the-box carrier feedthrough (LO leakage) and sideband suppression are not good enough for one's application. The calibration procedure is described in details in Analog Devices application note <u>AN-1039</u>. It is to be applied to each COM-3504 + IQ modulator assembly once (factory calibration).

This module is not designed to affect the phase error, which limits its ability to reduce sideband suppression [sideband suppression requires perfect phase AND I/Q gain balance].

Timing

ADC Timing

The user supplies the ADC sampling clock ADC_CLK_IN in the form of a differential signal.

The ADC output samples are sent within $t_{PD} = [2.2 - 6.4ns]$ after the rising edge of the received ADC_CLK_IN.

ADCx_SAMPLE_CLK_OUT is useful to reclock the ADC output samples at the receiving end (FPGA for example). The user can position the rising edge of the sampling clock (using control register REG1) to a window where the data is stable.

DAC Timing

The user supplies the sampling clock DAC_CLK_IN in the form of a differential LVDS signal.

The user must supply the DAC data bits in a timely manner such that the DAC bits are stable within a [-0.4ns - +1.2ns] window around the rising edge of the sampling clock DAC_CLK_IN (when seen at the DAC).

Performance

Low Pass Filter

Each D/A Converter is followed by a low-pass filter to suppress clock spectral spurious lines and aliasing. The filter response is as follows:

Passband: 0 – 125 MHz Passband gain flatness: better than ±0.3 dB in any 100 MHz sub-band. Rejection at 237 MHz: 30 dB Out of band spectral spurious lines: < -84dBc in any

3 KHz band (TBC).

Mechanical Interface

Pinout

Mini USB Connector, J1

The COM-3504 is a USB device with a mini type AB connector. (G = GND)

Digital I/O Connector, J6

98-pin Female Connector

This connector is designed for a direct connection to FPGA-based ComBlocks (COM-18xx)

Analog Differential I/O Connector, J5

40-pin (2 rows x 20) 2mm male connector.

This connector is designed for a direct connection to the COM-350x transceivers.

M&C Connector J9

12-pin (2 rows x 6) 2mm male connector.

M&C Connector J10

12-pin (2 rows x 6) 2mm female connector.

I/O Compatibility List

(not an exhaustive list)
98-pin high-speed connector
$\underline{\text{COM-1800}} \text{ FPGA (Artix7-100)} + \text{ARM} + \text{DDR3 socket}$
+ GbE LAN + USB + NAND development platform
40-pin Connector
COM-3501 UHF Transceiver
COM-3505 Dual-band 2.4/5GHz transceiver (single
channel)
COM-3506 [400MHz-3GHz] customizable transceiver
2 SMA Rx Connectors
COM-2001 Dual DAC, for test purposes

ComBlock Ordering Information

COM-3504 DUAL ANALOG <-> DIGITAL CONVERSIONS

ECCN: 3A001.a.5

MSS • 845-N Quince Orchard Boulevard• Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 Facsimile: (240) 631-1676 E-mail: sales@comblock.com