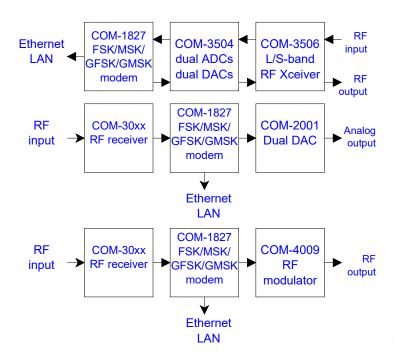
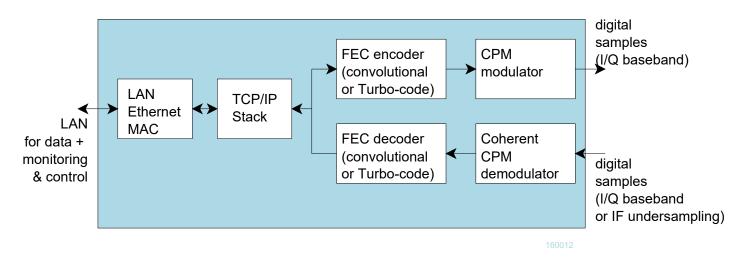


COM-1827 CPM MODEM

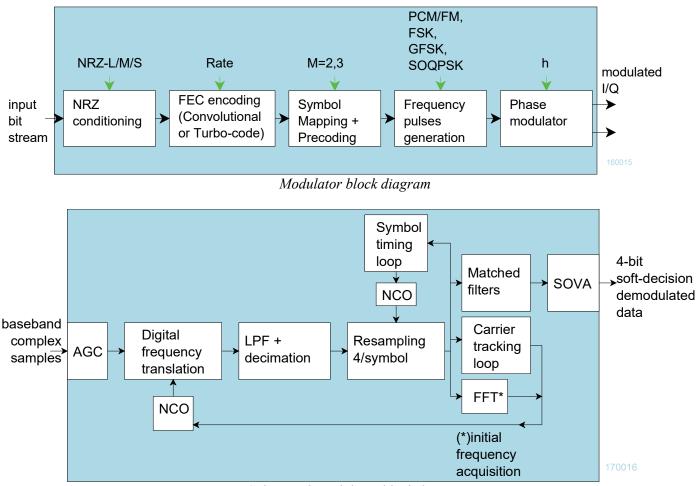

Key Features

- Modulator/demodulator for continuous-phase modulation (CPM), including
 - MSK, GMSK (BT = 0.7,0.5,0.3 and 0 0.25),
 - 0 FSK, GFSK,
 - PCM/FM 0
 - SOQPSK-MIL, SOQPSK-TG 0
- These constant envelope modulations are ideal for operation through power amplifiers near saturation.
- Flexible programmable features:
 - Symbol rate up to 39.5 Msymbols/s 0
 - Modulation index h [0.125 to 4] 0
 - 0 Frequency pulse type (rectangular, Gaussian, raised cosine, etc)
- Coherent demodulation for h = 0.5Non-coherent demodulation for all other modulation indices h.
- Frequency acquisition range > +/- 12% of symbol rate. Tracking symbol rates over +/-50ppm around nominal setting.
- Implementation loss < 0.5 dB down to Eb/No = 2dB. 4-bit soft-decision output (SOVA) for use by follow-on error correction.
- Convolutional or Turbo-code FEC error correction
- TCP server for modulator data input and demodulator output. UDP server for demodulator output.
- Built-in tools: PRBS-11 pseudo-random test sequence, BER tester, AWGN generator, internal loopback mode, carrier frequency error measurement.
- **ComScope** –enabled: key internal signals can be captured in real-time and displayed on host computer.

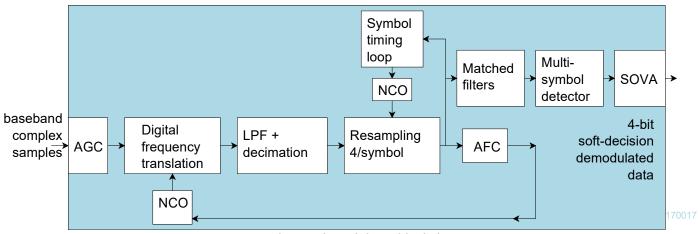
Connectorized 3"x 3.5" module for ease of • prototyping. Single 5V supply with reverse voltage and overvoltage protection. Interfaces with 3.3V LVTTL logic.



Typical assemblies



MSS • 845 Quince Orchard Boulevard Ste N • Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 www.ComBlock.com © MSS 2023 Issued 6/18/2023


Block Diagrams

Overall block diagram

Coherent demodulator block diagram

Non-coherent demodulator block diagram

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

• USB, TCP-IP/LAN

or connections via adjacent ComBlocks

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1827 is to use the **ComBlock Control Center** software supplied with the module on CD. In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the *Detect* button, next click to highlight the COM-1827 module to be configured, next click the Settings button to display the Settings window shown below. ComBlock Control Center

File Operations Functions Help

🔆 🔌 🖀 🎪 🗊 🖄 🕮

COM1827C CPM modem

COM3504 Dual Analog <-> Digital Conversions

COM3506 [400MHz - 3GHz] Transceiver

COM1827 CPM modem Basic Settings	
Modulation & FEC encoding Demodulation & FEC decoding IP network	
Input Selection: Test mode:internal PRBS-11 test sequence \checkmark	Data Format: NRZ-L 🗸 🗸
Symbol rate: 1000000 Symbols/s	Modulation index: 0.5 range 0 - 8.0
Premodulation frequency shaping filter: Gaussian (GFSK/GMSK) BT=0.3 ~	
Tx center frequency offset: 0 Hz	Tx spectrum inversion Modulator ON
Signal amplitude: 20000 range 0-65536	Noise amplitude: 0 range 0-65536
FEC encoding enabled	Turbo code encoder: $ m [rate 3/4 \ {\sim}]$
External 10MHz frequency reference	
Restore Default Apply	Ok Advan Cancel

COM1827 CPM modem Basic Settings X		
Modulation & FEC encoding Demodulation & FEC decoding IP network		
Sampling dock to external ADC/Receiver: 🔽 160000000 Samples/s	Measured input sampling rate: 1599999999 Samples/s	
Input Selection: IF input (undersampling) \checkmark	AGC response time: 12 0 - 14	
Input center frequency: 140000000 Hz	AFC Spectrum inversion	
Symbol rate: 1000000 Symbols/s	Modulation index: 0.5 range 0 - 8.0	
Premodulation frequency shaping filter: PCM/FM (premod LPF, 3dB cutoff at BT/2 \checkmark Data Format: NRZ-L \checkmark		
FEC decoding enabled	Turbo code decoder: Fate 1/3 ~	
Restore Default Apply	Ok Advan Cancel	

COM1827 CPM modem Basic Settings		×
Modulation & FEC encoding Demodulation & FEC	decoding IP network	
LAN	LAN IP address: 172 16 1 128	
	Subnet1 mask: 255 255 255 0	
	Default gateway: 172 16 3	
	MAC address: 02:42:3A:F0:54:00	
Resto	ore Default Apply Ok Advan Cancel	

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write. Definitions for the <u>Control registers</u> and <u>Status registers</u> are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). All control registers are read/write.

Several key parameters are computed on the basis of the receive sampling clock \mathbf{f}_{clk_rx} and transmit sampling clock \mathbf{f}_{clk_tx} or the 125 MHz internal processing clock f_{clk_p}.

General	
Parameters	Configuration
Internal/External frequency reference	0 = internal TCXO as frequency reference. 1 = external. Use the 10 MHz clock externally supplied through the J7 SMA connector as frequency reference. REG0(7)

Modulator	
Parameters	Configuration
Input selection INPUTS SE	1 = LAN TCP port 1024
L	3 = internal pseudo-random test sequence
	4 = zero input
	5 = serial data bit input + bit clock output, left connector
	6 = clock synchronous serial input (serial data bit, enable, Clear-To- Send input flow control, synchronous clock), left connector
	7 = unmodulated test mode (carrier only)
	REG0(3:0)
Data formatting	0 = NRZ-L
	1 = NRZ-M
	2 = NRZ-S
	REG0(6:4)

Transmit sampling clock, frequency f_{clk_tx} Modulator processing clock. Also serves as DAC sampling clock. Expressed as as $f_{clk_tx} = 160$ MHz * $M / (D * 0)$) where D is an integer divider in the range 1 - 106 M is a multiplier in the range 2.0 to 64.0 by steps of 1.0. Fixed point format 7.3 O is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3 Note: the graphical use interface computes the best values for M, D and O. f_{clk_tx} recommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate fymbol_ratefymbol_ratefymbol_ratefymbol_ratefymbol_rateformation frequency shaping filterPremodulation frequency shaping filterO standardFrequency shaping filterReG74 (LSB) - REG77 (MSB) O = rectangle (FSK, GMSK), BT=0.7 B = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
frequency fek_txExpressed as as $f_{dk_tx} = 160$ MHz * M / (D * 0)) where D is an integer divider in the range 1 - 106 M is a multiplier in the range 2.0 to 64.0 by steps of 1.0. Fixed point format 7.3 O is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3 Note: the graphical use interface computes the best values for M, D and O.felk_txrecommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol_rate fymbol_rateNominal symbol rate, defined as f_symbol_rate * 2 ³² / f_ck_txThroughout this document, the symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.3
$f_{ek_{L}x}$ Expressed as as $f_{ek_{L}x} = 100$ MH2 * M / (D * O)) where D is an integer divider in the range 1 - 106 M is a multiplier in the range 2.0 to 64.0 by steps of 1.0. Fixed point format 7.3 O is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3 Note: the graphical use interface computes the best values for M, D and O. $f_{elk_{L}x}$ recommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate fymbol_ratefymbol_ratefymbol_ratefymbol rate formation bit.REG74 (LSB) - REG77 (MSB) O = rectangle (FSK, MSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.3
$M / (D = 0)) \text{ Where}$ $D \text{ is an integer divider in the range 1 - 106}$ $M \text{ is a multiplier in the range 2.0 to} 64.0 \text{ by steps of 1.0}. Fixed point} format 7.3$ $O \text{ is a divider in the range 2.0 to} 128.0 \text{ by steps of 1.0}. Fixed point} format 7.3$ $Note: the graphical use interface computes the best values for M, D and O.$ $f_{elk, ts} \text{ recommended range 80-160}$ $MHz.$ $REG1(6:0) = D$ $REG2 = M(7:0)$ $REG3(1:0) = M(9:8)$ $REG4 = O(7:0)$ $REG5(2:0) = O(10:8)$ $Symbol rate f_{symbol_rate} * 2^{32} / f_{clk_ts}$ $Throughout this document, the symbol period is defined as f_{symbol_rate} * 2^{32} / f_{clk_ts}$ $REG74 (LSB) - REG77 (MSB)$ $0 = \text{rectangle (FSK, MSK)}$ $1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2)$ $2 = Gaussian (GFSK, GMSK), BT=0.7$ $3 = Gaussian (GFSK, GMSK), BT=0.3$
106M is a multiplier in the range 2.0 to 64.0 by steps of 1.0. Fixed point format 7.3O is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3Note: the graphical use interface computes the best values for M, D and O. f_{elk_ts} recommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate fsymbol_ratefsymbol_rateNominal symbol rate, defined as fsymbol_ratefsymbol_rateNore the call of the defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filterPremodulation frequency shaping filterPremodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
106M is a multiplier in the range 2.0 to 64.0 by steps of 1.0. Fixed point format 7.3O is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3Note: the graphical use interface computes the best values for M, D and O. f_{elk_ts} recommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate fsymbol_ratefsymbol_rateNominal symbol rate, defined as fsymbol_ratefsymbol_rateNore the call of the defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filterPremodulation frequency shaping filterPremodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
64.0 by steps of 1.0. Fixed point format 7.3O is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3Note: the graphical use interface computes the best values for M, D and O.fetk_txrecommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate fsymbol_ratefsymbol_ratefsymbol_ratefsymbol_ratefsymbol_ratefsymbol_ratefsymbol_ratefrequency shaping filterPremodulation frequency shaping filterPremodulation frequency shaping filterREG74 (LSB) - REG77 (MSB)O = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.3
64.0 by steps of 1.0. Fixed point format 7.3O is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3Note: the graphical use interface computes the best values for M, D and O.fetk_txrecommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate fsymbol_ratefsymbol_ratefsymbol_ratefsymbol_ratefsymbol_ratefsymbol_ratefsymbol_ratefrequency shaping filterPremodulation frequency shaping filterPremodulation frequency shaping filterREG74 (LSB) - REG77 (MSB)O = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.3
format 7.3OO is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3Note: the graphical use interface computes the best values for M, D and O. $f_{clk,tx}$ recommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate f_symbol_ratef_symbol_ratef_symbol_ratef_symbol_rateformationfrequency shaping filterPremodulation frequency shaping filterPremodulation frequency shaping filterPremodulation frequency shaping filterREG74 (LSB) - REG77 (MSB) O = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.3
128.0 by steps of 1.0. Fixed point format 7.3 Note: the graphical use interface computes the best values for M, D and O. f_{clk_tx} recommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate fsymbol_ratefsymbol_rate fsymbol_rateNominal symbol rate, defined as fsymbol_ratefsymbol_rate fsymbol_ratefsymbol_rate fsymbol_rateDef Complexity formation frequency shaping filterPremodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.3
128.0 by steps of 1.0. Fixed point format 7.3 Note: the graphical use interface computes the best values for M, D and O. f_{clk_tx} recommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate fsymbol_ratefsymbol_rate fsymbol_rateNominal symbol rate, defined as fsymbol_ratefsymbol_rate fsymbol_ratefsymbol_rate fsymbol_rateDef Complexity formation frequency shaping filterPremodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.3
format 7.3Note: the graphical use interface computes the best values for M, D and O. f_{clk_tx} recommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate f_{symbol_rate} Nominal symbol rate, defined as f_{symbol_rate} f.ymbol_ratef.ymbol_ratef.geG74 (LSB) - REG77 (MSB)Premodulation frequency shaping filterPremodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.3
computes the best values for M, D and O. $f_{clk,tx}$ recommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate f_symbol_ratef_symb
computes the best values for M, D and O. $f_{clk,tx}$ recommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate f_symbol_ratef_symb
and O. f_{clk_tx} recommended range 80-160 MHz.REG1(6:0) = D REG2 = M(7:0) REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate f_symbol_rate
MHz.REG1(6:0) = DREG2 = M(7:0)REG3(1:0) = M(9:8)REG4 = O(7:0)REG5(2:0) = O(10:8)Symbol ratefsymbol_ratefsymbol_rateratefsymbol_rateratefsymbol_ratefsymbol_ratefsymbol_ratefsymbol_raterateREG74 (LSB) - REG77 (MSB)Premodulationfrequencyshaping filter0 = rectangle (FSK, MSK)1 = PCM/FM (premod LPF, 3dB)cutoff frequency at BT/2)2 = Gaussian (GFSK,GMSK),BT=0.73 = Gaussian (GFSK,GMSK),BT=0.54 = Gaussian (GFSK,GMSK),BT=0.3
MHz.REG1(6:0) = DREG2 = M(7:0)REG3(1:0) = M(9:8)REG4 = O(7:0)REG5(2:0) = O(10:8)Symbol ratefsymbol_ratefsymbol_ratefsymbol_ratefsymbol_raterateThroughout this document, the symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
MHz.REG1(6:0) = DREG2 = M(7:0)REG3(1:0) = M(9:8)REG4 = O(7:0)REG5(2:0) = O(10:8)Symbol ratefsymbol_ratefsymbol_rateratefsymbol_rateratefsymbol_ratefsymbol_ratefsymbol_ratefsymbol_raterateREG74 (LSB) - REG77 (MSB)Premodulationfrequencyshaping filter0 = rectangle (FSK, MSK)1 = PCM/FM (premod LPF, 3dB)cutoff frequency at BT/2)2 = Gaussian (GFSK,GMSK),BT=0.73 = Gaussian (GFSK,GMSK),BT=0.54 = Gaussian (GFSK,GMSK),BT=0.3
REG1(6:0) = DREG2 = M(7:0)REG3(1:0) = M(9:8)REG4 = O(7:0)REG5(2:0) = O(10:8)Symbol ratefsymbol_rateNominal symbol rate, defined asfsymbol_ratethroughout this document, the symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.3
REG2 = M(7:0)REG3(1:0) = M(9:8)REG4 = O(7:0)REG5(2:0) = O(10:8)Symbol ratefsymbol_rateNominal symbol rate, defined asfsymbol_rate* $2^{32} / f_{elk_tx}$ Throughout this document, the symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
REG2 = M(7:0)REG3(1:0) = M(9:8)REG4 = O(7:0)REG5(2:0) = O(10:8)Symbol ratefsymbol_rateNominal symbol rate, defined asfsymbol_rate* $2^{32} / f_{elk_tx}$ Throughout this document, the symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
REG3(1:0) = M(9:8) REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate fsymbol_rateNominal symbol rate, defined as fsymbol_rate * 2^{32} / felk_txThroughout this document, the symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
REG4 = O(7:0) REG5(2:0) = O(10:8)Symbol rate fsymbol_rateNominal symbol rate, defined as fsymbol_rate * $2^{32} / f_{elk_tx}$ Throughout this document, the symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
REG5(2:0) = O(10:8)Symbol rate fsymbol_rateNominal symbol rate, defined as fsymbol_rate * 2^{32} / fclk_txThroughout this document, the symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
Symbol rate f_{symbol_rate} Nominal symbol rate, defined as $f_{symbol_rate} * 2^{32} / f_{clk_tx}$ Throughout this document, the symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
f_symbol_ratef_symbol_rate* 2 ³² / f_clk_txThroughout this document, the symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
Throughout this document, the symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
symbol period is defined as the time to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
to send one element out of the M- symbol alphabet. In the case of SOQPSK, a symbol represents only one information bit.Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
SOQPSK, a symbol represents only one information bit.REG74 (LSB) – REG77 (MSB)Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
one information bit.REG74 (LSB) – REG77 (MSB)Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
REG74 (LSB) – REG77 (MSB)Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
Premodulation frequency shaping filter0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
frequency shaping filter 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
shaping filter cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3
4 = Gaussian (GFSK,GMSK), BT=0.3
BT=0.3
5 = SOQPSK-MIL
$(\rho, \mathbf{B}, \mathbf{T}_1, \mathbf{T}_2) = (0, 0, 0.25, 0)$
6 = SOQPSK-TG
$(\rho, B, T_1, T_2) = (0.7, 1.25, 1.5, 0.5)$
7 = multi-h ARTM CPM
8 = Gaussian (GFSK,GMSK), BT=0.25
REG6(7:4)
6

Spectrum	Invert Q bit
inversion	0 = off, 1 = on
	REG7(6)
Turn output	Controls the external RF modulator
on/off	through the TX ENB pin.
	The TX_ENB control signal to the
	RF modulator will also be turned off
	when there is no input data to
	transmit.
	0 = off
	1 = on
	REG7(7)
Modulation	Modulation index h. Fixed-point
Index h	format 4.12
	Thus, 0x0800 represents an index of
	0.5 (MSK, GMSK, etc)
	Valid range: 0 – 7.9998
	REG8 (LSB) – REG9 (MSB)
D: :- 1 C: 1	
Digital Signal	16-bit amplitude scaling factor for
gain	the modulated signal.
	The maximum level should be
	adjusted to prevent saturation. The
	settings may vary slightly with the
	selected symbol rate. Please check
	for saturation (see <u>test points</u>) when
	changing either the symbol rate or
	the signal gain.
	REG10 (LSB) – REG11 (MSB)
Additive White	16-bit amplitude scaling factor for
Gaussian Noise	additive white Gaussian noise.
	additive white Gaussian hoise.
gain	
	Because of the potential for
	Because of the potential for saturation, please check for
	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when
	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter.
gain	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB)
gain Output center	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. <u>REG12 (LSB) – REG13 (MSB)</u> The modulated signal center
gain	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. <u>REG12 (LSB) – REG13 (MSB)</u> The modulated signal center frequency can be shifted in
gain Output center	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. <u>REG12 (LSB) – REG13 (MSB)</u> The modulated signal center
gain Output center	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. <u>REG12 (LSB) – REG13 (MSB)</u> The modulated signal center frequency can be shifted in frequency
gain Output center	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. <u>REG12 (LSB) – REG13 (MSB)</u> The modulated signal center frequency can be shifted in
gain Output center	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. <u>REG12 (LSB) – REG13 (MSB)</u> The modulated signal center frequency can be shifted in frequency
gain Output center	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. <u>REG12 (LSB) – REG13 (MSB)</u> The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as
gain Output center	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. <u>REG12 (LSB) – REG13 (MSB)</u> The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation)
gain Output center	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. <u>REG12 (LSB) – REG13 (MSB)</u> The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as
gain Output center	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{clk_tx}$ REG14 (LSB) – REG17 (MSB)
gain Output center frequency (f _c) External	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{elk_tx}$ REG14 (LSB) – REG17 (MSB) When using an external transceiver
gain Output center frequency (f _c) External transmitter	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{elk_tx}$ REG14 (LSB) – REG17 (MSB) When using an external transceiver such as the COM-350x family, the
gain Output center frequency (f _c) External	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{elk_tx}$ REG14 (LSB) – REG17 (MSB) When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled
gain Output center frequency (f _c) External transmitter	Because of the potential for saturation, please check for saturation (see test points) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{clk_tx}$ REG14 (LSB) – REG17 (MSB) When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled through the TX_GAIN_CNTRL1
gain Output center frequency (f _c) External transmitter	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{etk_tx}$ REG14 (LSB) – REG17 (MSB) When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled through the TX_GAIN_CNTRL1 analog output signal. Range 0 –
gain Output center frequency (f _c) External transmitter	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{clk_tx}$ REG14 (LSB) – REG17 (MSB) When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled through the TX_GAIN_CNTRL1 analog output signal. Range 0 – 3.3V.
gain Output center frequency (f _c) External transmitter	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{etk_tx}$ REG14 (LSB) – REG17 (MSB) When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled through the TX_GAIN_CNTRL1 analog output signal. Range 0 –
gain Output center frequency (f _c) External transmitter	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. <u>REG12 (LSB) – REG13 (MSB)</u> The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{elk_tx}$ <u>REG14 (LSB) – REG17 (MSB)</u> When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled through the TX_GAIN_CNTRL1 analog output signal. Range 0 – 3.3V. <u>REG22: LSB, REG23(3:0): MSb</u>
gain Output center frequency (f _c) External transmitter gain control	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{elk_tx}$ REG14 (LSB) – REG17 (MSB) When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled through the TX_GAIN_CNTRL1 analog output signal. Range 0 – 3.3V. REG22: LSB, REG23(3:0): MSb When serial input is selected
gain Output center frequency (f _c) External transmitter gain control Nominal serial input bit rate	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{etk_tx}$ REG14 (LSB) – REG17 (MSB) When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled through the TX_GAIN_CNTRL1 analog output signal. Range 0 – 3.3V. REG22: LSB, REG23(3:0): MSb When serial input is selected (INPUTS_SEL = 5), the modulator
gain Output center frequency (f _c) External transmitter gain control	Because of the potential for saturation, please check for saturation (see test points) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{etk_tx}$ REG14 (LSB) – REG17 (MSB) When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled through the TX_GAIN_CNTRL1 analog output signal. Range 0 – 3.3V. REG22: LSB, REG23(3:0): MSb When serial input is selected (INPUTS_SEL = 5), the modulator supplies a bit clock to the data source
gain Output center frequency (f _c) External transmitter gain control Nominal serial input bit rate	Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB) The modulated signal center frequency can be shifted in frequency 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{etk_tx}$ REG14 (LSB) – REG17 (MSB) When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled through the TX_GAIN_CNTRL1 analog output signal. Range 0 – 3.3V. REG22: LSB, REG23(3:0): MSb When serial input is selected (INPUTS_SEL = 5), the modulator

at the falling edge of this bit clock.
the FPGA will read the data bit at the
rising edge. The control registers are
computed as: (f _{serial_input_bit_rate} +1%)/
$f_{clk_p} * 2^{32}$
REG18 (LSB) – REG21(MSB)

Demodulator	
Parameters	Configuration
Generate ADC sampling clock	In some cases, the external receiver/analog-to-digital converter (ADC) may require a sampling clock. The COM-1827 generates such a programmable frequency clock on pin J4.A14 or J8.A14 or J8.B29/30 depending on the firmware option being run.
	0 = disable 1 = enable REG24(7)
ADC sampling rate f _{clk_rx}	When enabled, the programmable ADC sampling clock is defined by the parameters below:
	Expressed as $\mathbf{f}_{\text{clk}_rx} = 160 \text{ MHz * M /} (\text{D * O}))$ where
	D is an integer divider in the range 1 - 106
	M is a multiplier in the range 2.0 to 64.0 by steps of 1.0. Fixed point format 7.3
	O is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3
	Note: the graphical use interface computes the best values for M, D and O.
	Maximum f _{clk_rx} : 160 MHz
	REG24(6:0) = D
	REG25 = M(7:0)
	REG26(1:0) = M(9:8)
	REG27 = O(7:0) REG28(1:0) = O(10.8)
Demod input	$\frac{\text{REG28(1:0)} = O(10:8)}{0 = \text{baseband input (I/Q complex})}$
selection	samples) 1 = IF input (I as real input, Q is ignored)
	7 = internal loopback
	REG28(6:4)

External AGC response time	Users can to optimize AGC response time while avoiding instabilities (depends on external factors such as gain signal filtering at the RF front- end and modulation symbol rate). The AGC_DAC gain control signal is updated as follows 0 = every symbol, 1 = every 2 input symbols, 2 = every 4 input symbols, 3 = every 8 input symbols, etc 10 = every 1000 input symbols. Valid range 0 to 14. REG29(4:0)
Nominal input center frequency (f _c)	The nominal center frequency is a fixed frequency offset applied to the input samples. It is used for fine frequency corrections, for example to correct clock drifts. 32-bit signed integer (2's complement representation) expressed as $f_c * 2^{32} / f_{clk_rx}$ REG30 (LSB) – REG33 (MSB)
Nominal symbol rate f _{symbol_rate}	Nominal symbol rate, defined as f _{symbol_rate} * 2 ³² / f _{clk_rx} REG34 (LSB) – REG37 (MSB)
CIC_R	Receiver decimation factor from f _{clk_rx} to 8* f _{symbol_rate} . Valid range 1 - 16384 REG38 (LSB) – REG39 (MSB)
Modulation type	0 = rectangle (FSK, MSK) 1 = PCM/FM (premod LPF, 3dB cutoff frequency at BT/2) 2 = Gaussian (GFSK,GMSK), BT=0.7 3 = Gaussian (GFSK,GMSK), BT=0.5 4 = Gaussian (GFSK,GMSK), BT=0.3 5 = SOQPSK-MIL (ρ ,B,T ₁ ,T ₂) = (0,0,0.25,0) 6 = SOQPSK-TG (ρ ,B,T ₁ ,T ₂) = (0.7,1.25,1.5,0.5) 8 = Gaussian (GFSK,GMSK), BT=0.25
	REG40(7:4)

26.1.1.1	
Modulation	Modulation index h. Fixed-point
Index h	format 4.12
	Thus, 0x0800 represents an index of
	0.5 (MSK, GMSK, etc)
	Valid range: 0 – 7.9998
	REG41 (LSB) – REG42 (MSB)
Spectrum	Invert Q bit
inversion	0 = off
	1 = on
	REG43(0)
AFC enabled	Automatic frequency control to track
	1 2
	the received signal center frequency. $\Gamma_{\rm rec}$ (1) (D)
	Enabled (1) / Disabled (0)
	REG43(1)
AFC freeze	Freeze the AFC frequency correction
	at its current point (1) or track the
	received signal center frequency (0)
	REG43(2)
FFT for wider	An FFT can be enabled to acquire
frequency	signals over a frequency acquisition
acquisition	window of +/- 12% of the symbol
range	rate.
	Without FFT, the nominal frequency
	acquisition range is typically +/- 1%
	of the symbol rate.
	of the symbol fate.
	Enabling the FFT introduces a delay
	of 512 symbols + 100us during
	acquisition. The FFT works reliably
	-
	at $Eb/No > 4 dB$.
	0 = disabled
	1 = enabled
	REG43(4)
Data formatting	0 = NRZ-L
	1 = NRZ-M
	2 = NRZ-S
	REG44(6:4)
Output	1 = LAN TCP port 1025
selection	-
	2 = UDP
	3 = serial data bit + bit clock, left
	connector. J4 left connector
	REG45(6:4)

Error correction		
FEC encoding	'1' enabled, '0' bypassed	
	Depending on the firmware loaded, the FEC decoder is either	
	- K=7 rate ½ Viterbi decoding, or - turbo code	
	REG45(0)	
FEC decoding	'1' enabled, '0' bypassed	
enabled	REG44(0)	
Turbo code encoder Uncoded payload size in	Preferred sizes: 14, 63, 250 Bytes Must NOT be an integer multiple of 15 Maximum 254 Bytes.	
Bytes.		
Turbo code	$\frac{\text{REG65}}{0 = \text{rate } 1/3}$	
encoder rate	1 = rate 1/2	
	2 = rate 2/3	
	3 = rate 3/4	
	4 = rate 4/5	
	5 = rate 5/6	
	6 = rate 6/7 7 = rate 7/8	
	REG66(3:0)	
Turbo code	Encoded frame size in bits. For	
encoder Encoded frame size in bits	example: when payload size is 14, rate $1/3$, the encoded frame size is 14*8*3 = 336 bits. Does not include any periodic synchronization field.	
	REG67 LSB REG68(6:0) (MSB)	
Turbo code	Preferred sizes: 14, 63, 250 Bytes	
decoder Decoded	Must NOT be an integer multiple of 15	
payload size in Bytes.	Maximum 254 Bytes.	
	REG69	
Turbo code	0 = rate 1/3	
decoder rate	1 = rate 1/2	
	2 = rate 2/3 3 = rate 3/4	
	3 = rate 3/4 4 = rate 4/5	
	5 = rate 5/6	
	6 = rate 6/7	
	7 = rate 7/8	
Turbo codo	REG70(3:0)	
Turbo code decoder Coded frame size in bits	Coded frame size in bits. For example: when payload size is 14, rate 1/3, the coded frame size is 14*8*3 = 336 bits. Does not include any periodic synchronization field.	
	REG71 LSB REG72(6:0) (MSB)	

Turbo code decoder maximum number of iterations	1 – 15. Typical settings is 7. Must be an odd number REG73
iterations	

Network Interface		
Parameters	Configuration	
LAN MAC address LSB	REG236. To ensure uniqueness of	
address LSB	MAC address. The MAC address most	
	significant bytes are tied to the FPGA	
	DNA ID. However, since Xilinx	
	cannot guarantee the DNA ID uniqueness, this register can be set at	
	the time of manufacturing to ensure	
	uniqueness.	
	This byte is not overwritten when	
	importing configuration data.	
Static IP	4-byte IPv4 address.	
address	Example : 0x AC 10 01 80 designates	
	address 172.16.1.128	
	REG47 (MSB) - REG50 (LSB)	
Subnet mask	REG51 (MSB) – REG54(LSB)	
Gateway IP address	REG55 (MSB) – REG58(LSB)	
Destination	4-byte IPv4 address	
IP address	Destination IP address for UDP frames	
	with decoded data.	
	REG59 (MSB) – REG62(LSB)	
Destination ports	REG63(LSB) – REG64(MSB)	

(Re-)Writing to the last control register REG73 is recommended after a configuration change to enact the change.

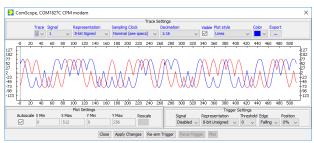
Status Registers

Parameters	Monitoring		
Hardware	At power-up, the hardware platform		
self-check	performs a quick self check. The result		
	is stored in status registers SREG0-9		
	Properly operating hardware will result		
	in the following sequence being		
	displayed:		
	01 F1 1D xx 1F 93 10 00 22 1F.		
LAN PHY ID	0x22		
	-		
EDCA	SREG8		
FPGA Configuration	SREG48(0): modulator		
	SREG48(1): demodulator		
options enabled in	SREG48(2): AWGN generation		
this active	SREG48(3): error correction type:		
firmware	'0' for convolutional		
minware	'l' for turbo code		
Tx:	Saturation in the output signal path. 0		
Modulator	when no saturation.		
saturation	These flags are reset upon reading this		
	status register.		
	SREG10(1:0)		
Tx:	SREG11(LSB) – SREG13(MSB)		
Measured	SKEOTI(ESD) - SKEOTS(WISD)		
modulated			
signal			
power			
Tx:	Approximation: noise power is		
Measured	uniform over a range of +/- 2*symbol		
AWGN	rate		
power	SREG14(LSB) – SREG16(MSB)		
FEC decoder	The burst-mode FEC decoder		
input BER	computes the input BER prior to		
measurement	decoding. Mesasured in a frame. This		
(convolutiona	method works with any bit sequence.		
l code)	SREG17 (LSB) - SREG19 (MSB)		
FEC decoder	BER measured in the uncoded periodic		
input BER	sync words. Measured over TBD bits		
measurement	5		
(Turbo code)	SREG17 (LSB) - SREG18 (MSB)		
Viterbi	(Only when convolutional FEC)		
decoder lock	0 = unlocked		
status	1 = locked		
	SREG20(0)		
SOF locked	Detected periodic start of frame		
SOF locked	-		
	synchronization sequences (only when		
	Turbo code)		
	SREG20(1)		
	0 = not synchronized		
	1 = synchronized		
BER tester	SREG20(2): 1 when the BERT is		
synchronized	synchronized with the received PRBS-		
	11 test sequence.		
Bit error rate	Monitors the BER (number of bit		
	errors over 80,000 received bits) when		
	the modulator is sending a PRBS-11		
1	, III CAMMAN IN DUIMING & I KDO II		
	test sequence.		

	SREG21 (LSB) – SREG23 (MSB)
AGC	Front-end AGC gain settings. 12-bit
	unsigned. Inverted (0 for maximum
	gain)
	SREG24 (LSB) SREC25(2:0) (MSD)
<u> </u>	SREG25(3:0) (MSB)
Carrier	Residual frequency offset with respect
frequency	to the nominal carrier frequency.
offset2	32-bit signed integer expressed as
	fcerror * * 2 ³⁰ / f _{symbol_rate}
	SREG26 (LSB) – SREG29 (MSB)
SNR	2*(S+N)/N ratio,
	valid only during code lock.
	Linear (not in dBs)
	Fixed point format 14.2
	SREG34 (LSB) – SREG35 (MSB)
Demod status	Bit 0: carrier lock
	Bit 1: rx signal presence
	Bit 2: AFC lock
	SREG36
Input	The input sampling rate is measured
sampling rate	and displayed here. The frequency
	measurement accuracy is a function
	of the internal clock stability.
	The measurement is expressed in Hz.
	SREG49 (LSB) – SREG52(MSB)
TCP-IP Con	nection Monitoring
Parameters	Monitoring
MAC address	Unique 48-bit hardware address
	(802.3). In the form
	SREG40:SREG41:SREG42:
	:SREG45
Ethernet MAC bad CRC	SREG46 (LSB) – SREG47(MSB)
counter	
Multi-byte st	atus variables are latched upon (re-)reading

Multi-byte status variables are latched upon (re-)reading SREG7.

ComScope Monitoring


Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. Click on the button to start, then select the signal traces and trigger are defined as follows:

T 1	E	NI.	D
Trace 1	Format	Nomina	Buffer
signals		1	length
		samplin	(samples
		g)
		rate	
1: I-channel	8-bit	ADC	512
input, directly	signed	clock	
from ADC		f _{clk_rx}	
(could be at IF)			
2: front-end	8-bit	2	512
AGC	unsigne	samples/	512
	d	symbol	
3: symbol	a 8-bit	1	512
timing loop:		sample /	512
accumulated	signed	symbol	
timing			
correction			
Trace 2	Format	Nomina	Buffer
signals		1	length
5		samplin	(samples
3		samplin g	(samples
9		samplin g rate	· •
1: Input Q	8-bit	g	· •
	8-bit signed	g rate)
1: Input Q	-	g rate ADC clock)
1: Input Q	-	g rate ADC)
1: Input Q signal	signed 8-bit	g rate ADC clock f _{clk_rx}	512
1: Input Q signal 2: I signal after elastic buffer,	signed	g rate ADC clock f _{clk_rx} 4	512
1: Input Q signal 2: I signal after elastic buffer, interpolation	signed 8-bit	g rate ADC clock f _{clk rx} 4 samples/	512
1: Input Q signal 2: I signal after elastic buffer, interpolation and	signed 8-bit	g rate ADC clock f _{clk rx} 4 samples/	512
1: Input Q signal 2: I signal after elastic buffer, interpolation and resampling at	signed 8-bit	g rate ADC clock f _{clk rx} 4 samples/	512
1: Input Q signal 2: I signal after elastic buffer, interpolation and resampling at 4	signed 8-bit	g rate ADC clock f _{clk rx} 4 samples/	512
1: Input Q signal 2: I signal after elastic buffer, interpolation and resampling at	signed 8-bit	g rate ADC clock f _{clk rx} 4 samples/	512
1: Input Q signal 2: I signal after elastic buffer, interpolation and resampling at 4 samples/symb ol 3: carrier	signed 8-bit	g rate ADC clock f _{clk rx} 4 samples/	512
1: Input Q signal 2: I signal after elastic buffer, interpolation and resampling at 4 samples/symb ol 3: carrier tracking loop:	signed 8-bit signed	g rate ADC clock f _{clk rx} 4 samples/ symbol 4 samples/	512
1: Input Q signal 2: I signal after elastic buffer, interpolation and resampling at 4 samples/symb ol 3: carrier tracking loop: accumulated	signed 8-bit signed 8-bit	g rate ADC clock f _{clk rx} 4 samples/ symbol 4	512
1: Input Q signal 2: I signal after elastic buffer, interpolation and resampling at 4 samples/symb ol 3: carrier tracking loop:	signed 8-bit signed 8-bit	g rate ADC clock f _{clk rx} 4 samples/ symbol 4 samples/	512

Signals sampling rates can be changed under software control by adjusting the decimation factor and/or selecting the f_{clk_rx} demod clock as real-time sampling clock.

In particular, selecting the f_{elk_rx} demod clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

ComScope Window Sample: showing MSK received baseband waveform (I = blue, Q = red)

Digital Test Points

Test	Definition	
Point		
J4/A18	BER tester synchronized	
J4/A19	BER tester matched filter output (detects	
	start of PRBS11 sequence)	
J4/A20	Byte error detected by BER tester	
J4/A21	Transmit start of frame	
J4/A22	Modulator saturation	
J4/A23	Receiver SOF locked	
J4/A24	Demod signal presence detected at FFT	
J4/A25	Demodulator recovered carrier/center	
	frequency	
J4/A26	Demodulator recovered symbol timing error	
	frequency	

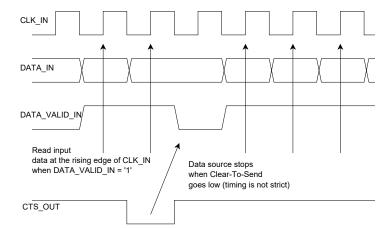
Options

Several interface types are supported through multiple firmware options. All firmware versions are on the supplied CD-ROM and can also be downloaded from

http://www.comblock.com/download.html

Changing the firmware option requires loading the firmware once using the ComBlock control center, then switching between the stored firmware versions The selected firmware option is automatically reloaded at power up or upon software command within 18 seconds

Option	Definition
-A	J8 right connector: 2*12-bit unsigned (offset binary) output samples to an external dual DAC. This interface is compatible with the COM-2001 dual 10-bit DACs. (maximum 125 MSamples/s)
	J4 left connector: 2*12-bit input, COM- 30XX compatible receiver
-В	Receiver-only.
	J8 right connector: 2*12-bit input samples. Input compatible with COM-30xx receivers
	J4 left connector: synchronous serial receiver output bit streams.
-C	J8 right connector: 2*16-bit output samples, 2*12-bit input samples. This interface is compatible with the COM-3504 dual Analog<->Digital Conversions. Maximum 160 MSamples/s.
	J4 left connector: synchronous serial modem input and output bit streams.
-D	J8 Right connector : 2*16-bit LVDS output samples. This interface is compatible with the COM-4009 broadband RF modulator.
	J4 left connector: 2*12-bit input, COM- 30XX compatible receiver
-E	J8 right connector: 2*14-bit unsigned (offset binary) output samples to an external dual DAC. This interface is compatible with the COM-4004 70 MHz [0.2 - 88 MHz] IF modulator, 50 MSamples/s.
	J4 left connector: 2*12-bit input, COM- 30XX compatible receiver
-F	J8 Right connector : 2*16-bit LVDS output samples. This interface is compatible with the COM-4009 broadband RF modulator.
	J4 left connector: bit serial input.
	12


Operation

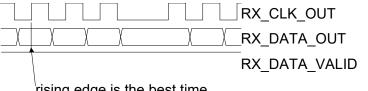
Transmitter Inputs

The transmitter supports three input types:

1. A TCP connection from a remote TCP client over Gigabit Ethernet (10/100/1000 Mbps). The modem comprises a TCP server listening at port 1024. The TCP protocol ensures a proper flow control, without any underflow or overflow, as long as the TCP client sends data as fast as allowed by the TCP connection.

2. Clock synchronous serial data through the left connector if available [the left connector could also be used by other modules]. The transmit data flow is controlled by a "Clear-To-Send" flag from the modulator. The data source should stop sending new data when the CTS_OUT flag is low.

3. Serial input through the left connector if available [the left connector could also be used by other modules]. The COM-1827 supplies the bit clock to the data source. The data source should supply the next bit at the falling edge of the bit clock. The nominal bit rate must be defined in REG18-21.


Receiver Outputs

The receiver supports three output types:

1. TCP-IP

2. UDP frames to a user-specified destination IP address and port number.

3. Clock synchronous serial data through the left connector if available [the left connector could also be used by other modules].

rising edge is the best time for user to read the rx data bit

180012

Specifications

[1] IRIG-106 "Telemetry Standard RCC Document 106-07, Chapter 2", for SOQPSK TG

[2] MIL-STD-188-181B for SOQPSK-MIL

FSK Modulation

The FSK modulation and its derivatives (CPFSK, MSK, GMSK, GFSK) are best described by the following equations for the modulated signal s(t). The first equation describes a phase modulator, with the modulated centered around the center frequency f_c .

$$s(t) = \sqrt{\frac{2E_s}{T}} \cdot \cos(2\pi f_c t + \theta(t) + \theta_0)$$

where

- E_s is the energy per symbol
- T is the symbol period
- f_c is the center frequency
- $\theta(t)$ is the phase modulation


The COM-1827 implements a <u>continuous phase</u> FSK demodulator. It assumes that there are no phase discontinuities between symbols. The CPFSK phase modulation can be described as:

$$\theta(t) = \frac{\pi h}{T} \int_{0}^{t} a_{i}(t) dt$$

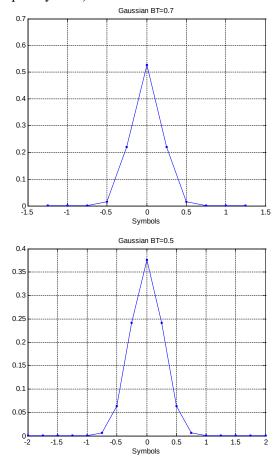
where:

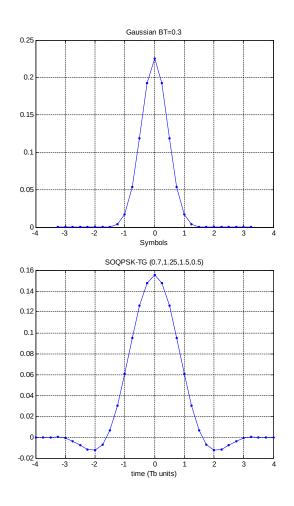
h is the modulation index. A modulation index of 0.5 yields a maximum phase change of π/2 over a symbol.

 a_i are the symbols. With 2-FSK, the binary data is represented as -1 (for '0') and +1 (for '1').

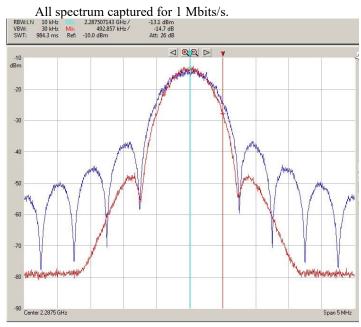
Continuous FSK modulated signal example

FSK modulation is sometimes characterized by the frequency separation between symbols. The

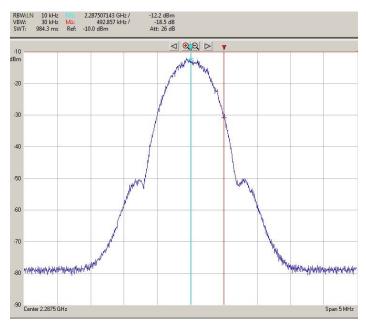

relationship between modulation index h and frequency separation is $f_{separation} = 0.5 \text{ h} f_{symbol_clk}$

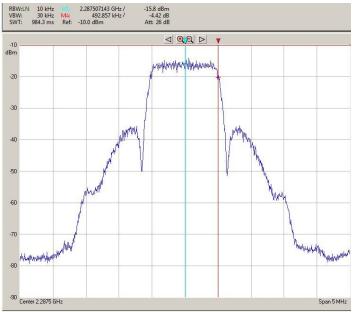

Frequency Sign

By definition, bit '1' is associated with a positive frequency (i.e. phase advance), whereas bit '0' results in a negative frequency (phase decrease).

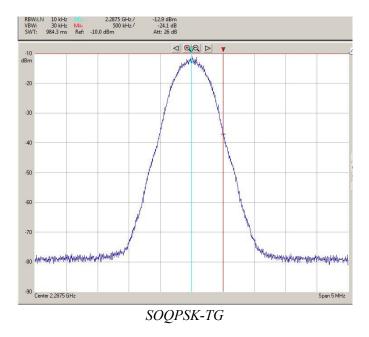

Frequency Pulse Shaping Filters

The filter responses are shown below (for 4 samples/symbol)

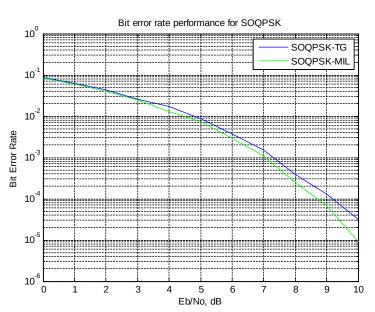


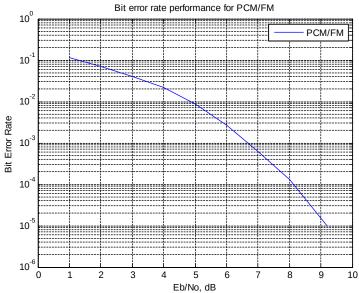

Transmit Spectrum

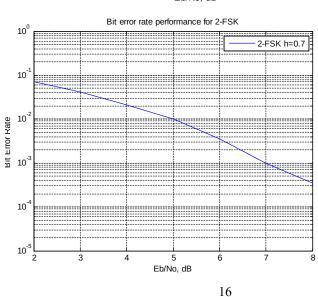
MSK (blue) vs GMSK BT=0.3 (red)

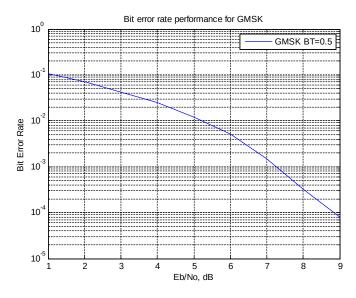

GMSK BT=0.25

PCM/FM h=0.7






BER vs Eb/No


The plot below shows near-theoretical performance for the SOQPSK demodulators without error correction.

Test condition: +50ppm symbol timing error, 30deg carrier phase error

Receiver Outputs

The receiver supports four output types:

1. A TCP server listening/waiting for a client connection over Gigabit Ethernet (10/100/1000 Mbps) at port 1025. Once the remote client is connected, the receiver forwards the demodulated data stream to the TCP client.

2. A UDP server sending frames to the user-specified destination IP address. UDP frames are sent when upon receiving 1024 bytes of data or after 0.5 second, whichever event comes first. The UDP frame format is as follows:
16-bit frame size
16-bit frame counter
12 null bytes
up to 1024 data bytes.

3. Serial bit stream

4. Synchronous serial bit stream.

Demodulation Algorithms

Two demodulation algorithms are included:

- Coherent demodulation, whereby the carrier phase is recovered and tracked. Trellis decoding using matched filters and soft-output Viterbi algorithm (SOVA) recovers the information bits. The modulation index must be 0.5.

- All other modulation indices are supported through a non-coherent demodulator based on matched filters and multi-symbol detection followed by SOVA.

Frequency Acquisition and Tracking

In the coherent demodulator (h = 0.5), an FFT first detects the signal presence and frequency error. After frequency correction, the residual frequency and phase errors are tracked by a conventional Costas loop PLL.

The non-coherent demodulator comprises an automatic frequency control (AFC) loop to acquire and track the residual frequency offset of the modulated signal. The AFC loop can be enabled or disabled by the user.

Phase Ambiguity Resolution

The SOQPSK demodulator exhibits an inherent 0/90/180/270 phase ambiguity. To resolve this ambiguity, a periodic 32-bit synchronization word (0x5A0FBE66) is transmitted at the start of every frame and detected at the receiver. The frame size depends on the FEC codec selection:

- 2048+32 bit for convolutional code or no FEC, or

- one, two, four or eight turbo code encoder frames

Bit Timing Tracking

A first order loop is capable of acquiring and tracking bit timing differences between the transmitter and the receiver of at least \pm 50 ppm.

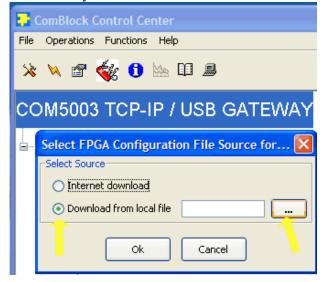
AGC

To maintain linearity throughout the receive path, several AGC loops control the signal level. While most AGC loops are internal, an additional AGC loop is dedicated to controlling an RF front-end.

The purpose of this AGC is to prevent saturation at the external A/D converter(s) while making full use of the A/D converter(s) dynamic range. The controlling analog signal is J4.B13

Load Software Updates

From time to time, ComBlock software updates are released.


To manually update the software, highlight the ComBlock and click on the Swiss army knife button.

The receiver can store multiple personalities. The list of personalities stored within the ComBlock Flash memory will be shown upon clicking on the Swiss army knife button.

ComBlock Control Center							
File Operations F	File Operations Functions Help						
* 🛰 🖻 🍕	6 0 🛛	s 11 <i>9</i>					
сом5003 -	TCP-IP	/ USB (GATE	WAY			
-COM800			JSB GAT	EWAY			×
-COM1	-Personalit Index	Personality	Option	Default	Authorized	Boot Protection	Address
CON	1 2 3	1400 5003 5003	B B B	D	Yes Yes Yes	Yes No No	0 262144 524288
	4 5		B	5	Yes Yes	No	0
C	6 7		B B		Yes Yes	No No	0 0
	-Add/Remo Index	ve/Modify Per Personality	sonality — Option	Password			
	3 V	5003	B	Passworu	Set Def	ault Add	l/Modify
				Clo	se		
<							>
172.16.1.128							

The default personality loaded at power up or after a reboot is identified by a 'D' in the Default column. Any unprotected personality can be updated while the Default personality is running. Select the personality index and click on the "Add/Modify" button.

The software configuration files are named with the .bit extension. The bit file can be downloaded via the Internet, from the ComBlock CD or any other local file.

The option and revision for the software currently running within the FPGA are listed at the bottom of the advanced settings window.

Recovery

This module is protected against corruption by an invalid FPGA configuration file (during firmware upgrade for example) or an invalid user configuration. To recover from such occurrence, connect a jumper in J3 and during power-up. This prevents the FPGA configuration and restore USB communication [LAN communication is restored only if the IP address is known/defined for the personality index selected as default]. Once this is done, the user can safely re-load a valid FPGA configuration file into flash memory using the ComBlock Control Center.

UDP Reset

Port 1029 is open as a UDP receive-only port. This port serves a single purpose: being able to reset the modem (and therefore the TCP-IP connection) gracefully. This feature is intended to remedy a common practical problem: it is a common occurrence for one side of a TCP-IP connection to end abnormally without the other side knowing that the connection is broken (for example when a client 'crashes'). In this case, new connections cannot be established without first closing the previous ones. The problem is particularly acute when the COM-1827 is at a remote location.

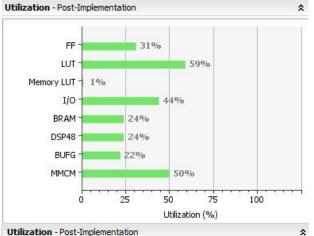
The command "@001RST<CR><LF>" sent as a UDP packet to this port will reset all TCP-IP connections within the COM-1827.

TCP-IP connections can also be cleared remotely from the ComBlock Control Center as illustrated below:

	ComBlock Control Center
File	Operations Functions Help
×	Communication Setup Ctrl+S Detect ComBlocks Ctrl+D
	Settings Ctrl+E Personalities Ctrl+M
	Status Registers Ctrl+R TCPReset TCP/IP Connection.
	Reset TCP/IP Connection
	Enter the IP-address of the ComBlock that you would like to reset: 172 16 1, 130
	Ok Cancel

Troubleshooting Checklist

1. The module is performs self-checks at power


up. Click on \bigcirc to display the status registers. Properly operating hardware will result in the following sequence being displayed: SREG0-SREG7 = 01 F1 1D xx 1F 93 10 22.

- 2. Check status register SREG4 bits 0 5: if not 111111, the power supply voltage may be outside the nominal range of 4.9 to 5.5V.
- 3. Demodulator can't achieve lock even at high signal-to-noise ratios:
 - Make sure the modulator baseband I/Q signals do not saturate, as such saturation would strongly distort the modulation phase information. (this is a phase demodulator!)

VHDL code

The FPGA code is written in VHDL. It does not use any IP core or third-party software. It occupies the following FPGA resources:

Utilization - Post-Implementation

Resource	Utilization	Available	Utilization %
FF	39223	126800	30.93
LUT	37140	63400	58.58
Memory LUT	85	19000	0.45
I/O	124	285	43.51
BRAM	33	135	24.44
DSP48	57	240	23.75
BUFG	7	32	21.88
MMCM	3	6	50.00

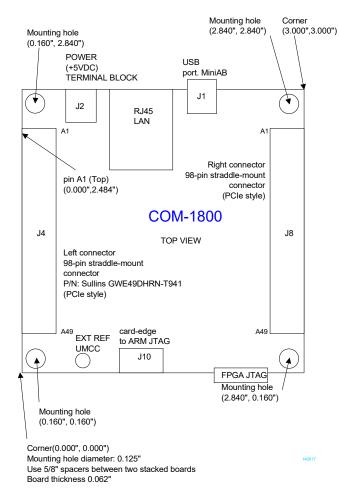
Interfaces

ADC/DAC Interface	Definition
ADC_SAMPLE_CLKOUT_P ADC_SAMPLE_CLKOUT_N	ADC sampling clock output: 160 MHz.
ADCx_DATA_IN[13:2]	ADCx digital samples input. 12-bit unsigned (also known as "offset binary") format. The two least significant bits (1:0) are unused (reserved for future use). 0x0000: lowest output level 0x3FFF: highest output level 0x1FFF or 0x2000 \approx center level CMOS 0 – 3.3V. Read at the rising edge of ADCx_SAMPLE_CLK_OUT.
ADCx_SAMPLE_ CLK_IN	Sampling clock input. Pinpoints the center of the ADC x _DATA_IN bits for reclocking at the receiving end. Index x is 1 or 2 CMOS 0 – 3.3V.
DAC_SAMPLE_CLKOUT_P DAC_SAMPLE_CLKOUT_N	DAC sampling clock output. Sets the DAC sampling rate.

DACx_DATA_OUT[15:0]	$0-3.3V$ LVCMOS differential signal. 160 Msamples/sDACx digital samples output. 16-bit unsigned (also known as "offset binary") format. $0x0000$: lowest input level $0xFFFF$: highest input level $0x7FFF or 0x8000 \approx$ center level CMOS 0 – 3.3V. Read at the rising edge of DAC SAMPLE CLK IN
AUX_SPI[5:1]	SPI interface to control the two auxiliary DACs and ADC in real-time. See AD5621 serial 12-bit DAC specifications. See AD7276 serial 12-bit ADC specifications.

Operating input voltage range

Supply voltage	+4.5V min, +12V max
	650mA typ.

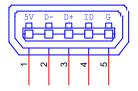

Absolute Maximum Ratings

Supply voltage	-0.5V min, +20V max
98-pin connector inputs	-0.5V min, +3.6V max

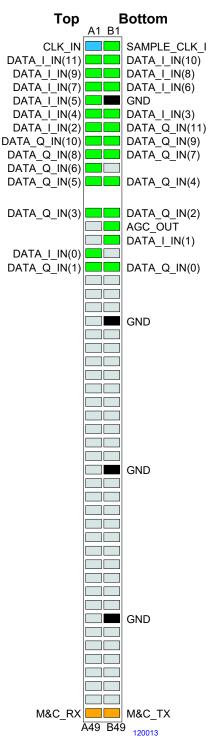
Important:

The I/O signals connected directly to the FPGA are NOT 5V tolerant!

Mechanical Interface

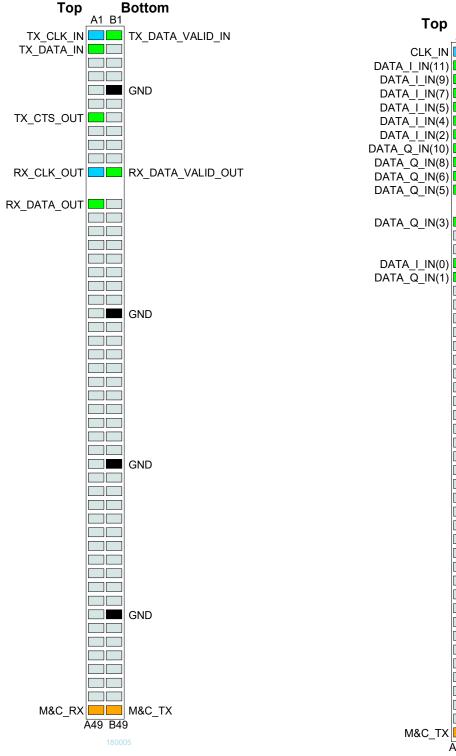

Schematics

The board schematics are available on-line at http://comblock.com/download/com 1800schematics.pdf

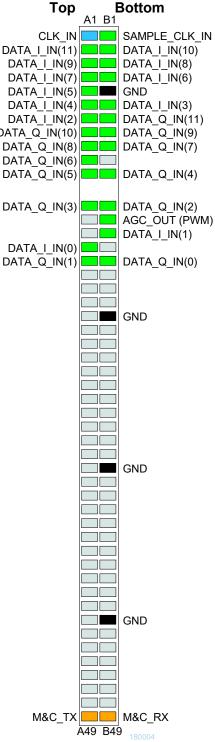

Pinout

USB

The USB port is equipped with mini type AB connectors. (G = GND). The COM-1827 acts as a USB device.

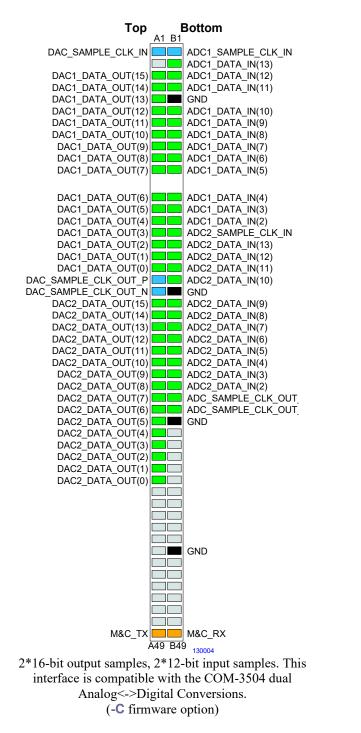


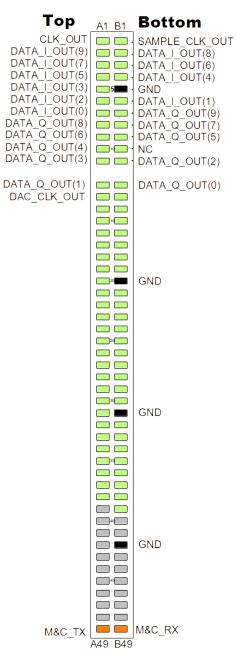
Left Connector J4



2*12-bit baseband input samples, compatible with COM-30xx receivers (-A/-D firmware options)

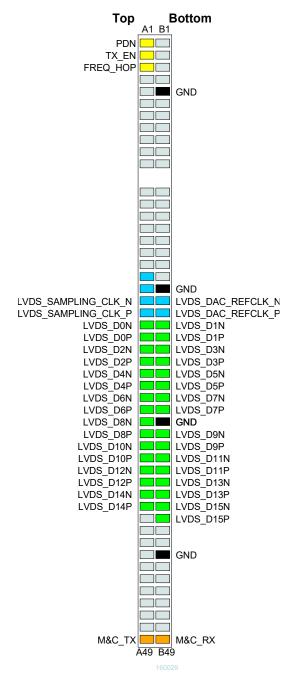
Left Connector J4


Right Connector J8


Modem synchronous serial input/output data, compatible with other digital ComBlock modules (COM-1800, etc). (-B/-C/-F firmware options)

2*12-bit baseband input samples, compatible with COM-30xx receivers (-**B** firmware option)

Right Connector J8



Right Connector J8

This interface is compatible with the COM-2001 dual DACs. (-A firmware option)

Right Connector J8

This interface is compatible with the COM-4009 RF modulator (-D firmware option)

I/O Compatibility List

(not an exhaustive list)

Right connector (J9)	
<u>COM-3504</u> Dual Analog <-> Digital Conversions	
2*16-bit 250 MSamples/s	
COM-4009 400 MHz – 4.4 GHz Broadband RF	
modulator	
COM-30xx RF/IF/Baseband receivers for frequencies	
ranging from 0 to 3 GHz.	
COM-2001 digital-to-analog converter (baseband).	

Configuration Management

This specification is to be used in conjunction with VHDL software revision 2 and ComBlock control center revision 4.03 and above.

It is possible to read back the option and version of the FPGA configuration currently active. Using the ComBlock Control Center, highlight the COM-1827 module, then go to the advanced settings. The option and version are listed at the bottom of the configuration panel.

For the latest data sheet, please refer to the **ComBlock** web site: <u>http://www.comblock.com/download/com1827.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>http://www.comblock.com/product_list.html</u>.

ComBlock Ordering Information

COM-1827 CPM modem

ECCN: EAR99

MSS • 845 Quince Orchard Boulevard Ste N• Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 E-mail: sales@comblock.com