

COM-1808_TX DVB-S2 DIGITAL TRANSMITTER

Key Features

- Digital DVB-S2 transmitter. Compliant with [1].
- Up to 4 concurrent input streams:
 - stream0 GbE TCP port 1024
 - stream1 GbE UDP port 1025
 - stream2 internal PRBS11 test sequence
 - stream3 internal Byte counter test sequence
- Stream 0 flexible user-defined configuration: stream type (transport stream, generic stream packetized, generic bit stream), user packet length, input stream synchronization, null packet detection, frame length, FEC encoding rate, modulation type.
- Other three input streams have fixed configurations.
- User-defined modulation attributes: symbol rate, frequency offset, SRRC filter roll-off, common to all input streams.

Supported features

Feature	Supported		
Input stream synchronizer	Yes		
Null packet deletion	Yes		
Error correction encoding	LDPC + BCH		
Encoding rate	1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, 9/10		
Coding and modulation	CCM, VCM, ACM		
FEC frame	normal (64800 bits) short (16200 bits)		
Modulation	QPSK, 8-PSK, 16APSK, 32APSK		
Maximum modulation symbol rate	80 Msymbols/s		
SRRC filter roll-off	0.35, 0.25 and 0.20		
Output	complex (I,Q) baseband samples, 16-bit precision.		

Typical assembly

Configuration

An entire ComBlock assembly comprising several ComBlock modules can be monitored and controlled centrally over a single connection with a host computer. Connection types include built-in types:

• USB, TCP-IP/LAN

or connections via adjacent ComBlocks

The module configuration is stored in non-volatile memory.

Configuration (Basic)

The easiest way to configure the COM-1808 is to use the **ComBlock Control Center** software (downloadable from https://comblock.com/download.html). In the **ComBlock Control Center** window detect the ComBlock module(s) by clicking the \checkmark *Detect* button, next click to highlight the COM-1808 module to be configured, next click the 🖆 Settings button to display the Settings window shown below.

ComBlock Control Center			
ile Operations Functions Help			
* 🛰 🗃 🍫 🗊 🔤 🕮			
OM1808D DVB-S2 Transmitter			
COM1808 DVB-S2 Transmitter Basic Settings			
Modulation & FEC encoding IP network			
Stream0 (TCP port 1024) Stream1 (UDP port 1025) Stream2 (PRBS-11 test sequence) Stream3 (Byte counter test sequence)			
MODCOD (See Table 12): 4 = QPSK rate 1/2 \checkmark Symbol rate: 20000000 Symbols/s			
SRRC filter rolloff: 35% V Tx center frequency offset: 0 Hz			
Tx spectrum inversion Modulator ON Signal amplitude: 30000 range 0-65536			
Noise amplitude: 0 range 0-65536 External 10MHz frequency reference			
Restore Default Apply Ok Adva Cancel			
COM1808 DVB-S2 Transmitter Basic Settings			
Modulation & FEC encoding IP network			
LAN IP address: 172. 16. 1. 128			
Subnet1 mask: 255. 255. 0			
Default gateway: 172 16 1 3			
MAC address: 00:00:00:00:00			
Restore Default Apply Ok Adva Cancel			

Configuration (Advanced)

Alternatively, users can access the full set of configuration features by specifying 8-bit control registers as listed below. These control registers can be set manually through the ComBlock Control Center or by software using the ComBlock API (see www.comblock.com/download/M&C_reference.pdf)

All control registers are read/write. Definitions for the Control registers and Status registers are provided below.

Control Registers

The module configuration parameters are stored in volatile (SRT command) or non-volatile memory (SRG command). All control registers are read/write.

Several key parameters are computed on the basis of the receive sampling clock \mathbf{f}_{clk_rx} and transmit sampling clock \mathbf{f}_{clk_tx} or the 125 MHz internal processing clock \mathbf{f}_{clk_p} .

General			
Parameters	Configuration		
Internal/External frequency	0 = internal TCXO as frequency reference.		
reference	1 = external. Use the 10 MHz clock externally supplied through the J7 SMA connector as frequency reference. REG0(7)		

Modulator			
Parameters	Configuration		
Input Stream enable	0 to disable, 1 to enable Stream0 : TCP server port 1024 Stream1 : UDP server port 1025 Stream2 : PRBS 11 test sequence Stream3 : Byte counter test sequence REG0(3:0)		
Transmit sampling clock frequency f _{clk_tx}	Modulator processing clock. Also serves as DAC sampling clock. Expressed as as $\mathbf{f}_{\text{clk}_{tx}} = 160 \text{ MHz} * \text{M} / (\text{D} * \text{O}))$ where		
	D is an integer divider in the range 1 - 106		
	M is a multiplier in the range 2.0 to 64.0 by steps of 1.0. Fixed point format 7.3		
	O is a divider in the range 2.0 to 128.0 by steps of 1.0. Fixed point format 7.3		
	Note: the graphical use interface computes the best values for M, D and O.		
	Baseline: 160 Msamples/s.		
	REG1(6:0) = D		
	REG2 = M(7:0)		
	REG3(1:0) = M(9:8)		
	REG4 = O(7:0)		
	REG5(2:0) = O(10:8)		

Symbol rate f _{symbol_rate}	The modulator symbol rate is expressed as $f_{symbol rate tx} * 2^{32} / f_{clk_dac}$		
	Because DDR is not supported at the DAC interface, the maximum symbol rate is $f_{elk_dac}/2$ [i.e. 0x8000000] REG24 (LSB) – REG27 (MSB)		
Modulation type	Modulation type 0 = unmodulated 1 = DVBS2 QPSK [1] section 5.4.1 2 = DVBS2 8-PSK [1] section 5.4.2 3 = DVBS2 16-APSK [1] section 5.4.3 4 = DVBS2 32-APSK [1] section 5.4.4 REG6(4:0)		
Root raised cosine filter rolloff factor	RRC filter rolloff 0 = 35%, 1 = 25%, 2 = 20%		
Spectrum inversion	$\frac{\text{REG7}(2:0)}{\text{Invert Q bit}}$ $0 = \text{off}$ $1 = \text{on}$ $\text{REG7}(6)$		
Turn output on/off	Controls the external RF modulator through the TX_ENB pin. The TX_ENB control signal to the RF modulator will also be turned off when there is no input data to transmit. 0 = off 1 = on REG7(7)		
Digital Signal gain	16-bit amplitude scaling factor for the modulated signal. The maximum level should be adjusted to prevent saturation. The settings may vary slightly with the selected symbol rate. Please check for saturation (see <u>test points</u>) when changing either the symbol rate or the signal gain. REG10 (LSB) – REG11 (MSB)		
Additive White Gaussian Noise gain	16-bit amplitude scaling factor for additive white Gaussian noise. Because of the potential for saturation, please check for saturation (see <u>test points</u>) when changing this parameter. REG12 (LSB) – REG13 (MSB)		
Output center frequency (\mathbf{f}_c)	The modulated signal center frequency can be shifted in frequency		

32-bit signed integer (2's
complement representation)
expressed as
$\mathbf{f_c} \cdot 2^{32} / \mathbf{f_{clk dac}}$
REG14 (LSB) – REG17 (MSB)
REG14 (LSB) – REG17 (MSB)

External transmitter gain control	When using an external transceiver such as the COM-350x family, the transmitter gain can be controlled through the TX_GAIN_CNTRL1 analog output signal. Range 0 – 3.3V. REG22: LSB, REG23(3:0): Msb
	REG22: LSB, REG23(3:0): Msb

Stream 0 attributes			
Туре	Transport Stream Input or Generic Stream Input (packetized or continuous)		
	11 = transport stream, 188B frame		
	00 = generic stream, packetized, user- defined fixed length		
	01 = generic bit stream		
	REG8(1:0)		
User Packet Length	User Packet Length in bits, in the range 0 to 65 535		
(UPL)	fixed 188 Bytes for transport stream, up to 65535 bits for generic stream		
	If UPL is greater than 65535 bits, use generic bit stream.		
	For packetized stream, UPL includes the sync byte		
	Ignored when generic continuous stream.		
	REG20 (MSB) - REG19(LSB)		
Null packet detection	Null Packet Deletion		
	Generally enabled for transport stream and/or ACM REG8(2)		
Input synchronizati on	Input Stream SYnchronization Indicator:		
	If ISSYI = 1 = active, the ISSY field is inserted after each User Packet		
	REG8(3)		
BB frame length	0 DVB-S2 normal frame nldpc=64800		
	1 DVB-S2 and DVB-S2X short frame nldpc=16200		
	2 DVB-S2X medium frame nldpc=32400		
	REG9(1:0)		

Other transport streams have fixed configurations.

Error correcti	Error correction			
LDPC	Coding rate (LDPC code identifier)			
encoding rate	can change dynamically (in the case			
	of VCM/ACM)			
	will be enacted at the next assembled			
	BBFRAME			
	0: rate 1/4 or 1/5			
	[normal,short,medium frames]			
	1: rate 1/3 [normal,short,medium			
	frames]			
	2: rate 2/5 [normal,short frames]			
	3: rate 1/2 [normal,short frames]			
	4: rate 3/5 [normal,short frames]			
	5: rate 2/3 [normal,short frames]			
	6: rate 3/4 [normal,short frames]			
	7: rate 4/5 [normal,short frames]			
	8: rate 5/6 [normal,short frames]			
	9: rate 8/9 [normal,short frames]			
	10: rate 9/10 [normal frames]			

REG18(4:0)

Network Interface				
Parameters	Configuration			
LAN MAC	REG236. To ensure uniqueness of			
address LSB	MAC address. The MAC address most			
	significant bytes are tied to the FPGA			
	DNA ID. However, since Xilinx			
	cannot guarantee the DNA ID			
	uniqueness, this register can be set at			
	the time of manufacturing to ensure			
	uniqueness.			
	This byte is not overwritten when			
	importing configuration data.			
Static IP	4-byte IPv4 address.			
address	Example : 0x AC 10 01 80 designates			
	address 172.16.1.128			
	REG47 (MSB) - REG50 (LSB)			
Subnet mask	Typically 0x FF FF FF 00			
	REG51 (MSB) – REG54(LSB)			
Gateway IP address	REG55 (MSB) – REG58(LSB)			

(Re-)Writing to the last control register REG58 is recommended after a configuration change to enact the change.

Status Registers

Parameters	Monitoring			
Hardware	At power-up, the hardware platform			
self-check	performs a quick self check. The result			
	is stored in status registers SREG0-9			
	Properly operating hardware will result			
	in the following sequence being			
	displayed:			
	01 F1 1D xx 1F 93 10 00 22 1F.			
LAN PHY ID	0x22			
	SREG8			
Tx:	Saturation in the output signal path.			
Modulator	0 when no saturation.			
saturation	bit 0: saturation at root raised cosine FIR filter			
	bit 1: saturation at first HBF x2			
	interpolation filter			
	hit 2: saturation at second HBF x2			
	interpolation filter			
	hit 3: saturation at frequency			
	translation			
	hit 4: saturation when adding AWGN			
	These flags are reset upon reading this			
	status register			
	SPEG10(4.0)			
Two	SDEC(1)(4.0) SDEC(1)(LSD) SDEC(1)(MSD)			
1X. Mansurad	SKEOTI(LSB) = SKEOTS(MSB)			
modulated				
signal				
nower				
	Approximation: noise nower is			
1 A. Mansurad	Approximation. Horse power is uniform over a range of $\pm / 2^*$ symbol			
AWGN	rate			
nower	SPEG14(LSB) SPEG16(MSB)			
GhE MAC	Unique 48 bit hardware address			
address	(802.2) In the form			
uuuress	(802.5). III the form SPEC17.SPEC18.SPEC10.			
	SREG1/:SREG18:SREG19:			
Ethernet	SKE022			
MAC bad	SREG23 (LSB) – SREG24(MSB)			
CRC counter				
TCP server	TCP server port 1024 connection			
connection	status for stream()			
status	1 = connected			
	$0 = n_0$ connection			
	SKEG(25)(0)			
UDP received	Number of UDP frames received at			
frame counter	port 1025 for stream1			
	SREG26 (LSB) – SREG27(MSB)			
Maile: lasta de				

Multi-byte status variables are latched upon (re-)reading SREG7.

ComScope Monitoring

Key internal signals can be captured in real-time and displayed on a host computer using the ComScope feature of the ComBlock Control Center. Click on the button to start, then select the signal traces and trigger are defined as follows:

Trace 1 signals	Format	Nomina l samplin g rate	Buffer length (samples)
1: modulated signal to DAC, I-channel	8-bit signed	DAC clock f _{elk dac}	512
Trace 2 signals	Format	Nomina l samplin g rate	Buffer length (samples)
1: modulated signal to DAC, Q-channel	8-bit signed	DAC clock f _{clk_dac}	512

Signals sampling rates can be changed under software control by adjusting the decimation factor

In particular, selecting the \mathbf{f}_{clk_adc} demod clock as real-time sampling clock allows one to have the same time-scale for all signals.

The ComScope user manual is available at www.comblock.com/download/comscope.pdf.

Digital Test Points

Test Point	Definition
J4/A11	CLK_Txg (DAC clock)
J4/A12	CLK P processing clock
J4/A13	160 MHz intermediate clock frequency

Options

Several interface types are supported through multiple firmware options. All firmware versions are on the supplied CD-ROM and can also be downloaded from

http://www.comblock.com/download.html

Changing the firmware option requires loading the firmware once using the ComBlock control center, then switching between the stored firmware versions The selected firmware option is automatically reloaded at power up or upon software command within 18 seconds

Option	Definition
-C	J8 right connector: 2*16-bit output samples, 2*12-bit input samples. This interface is compatible with the COM- 3504 dual Analog<->Digital Conversions. Maximum 160 MSamples/s. J4 left connector: synchronous serial
	modem input and output bit streams.
-D	J8 Right connector : 2*16-bit LVDS output samples. This interface is compatible with the COM-4009 broadband RF modulator.
	J4 left connector: 2*12-bit input, COM- 30XX compatible receiver

Operation

Transmitter Inputs

The transmitter supports up to four concurrent streams. Each input stream can be individually enabled/disabled.

Stream0:TCP data stream received over Gigabit Ethernet (10/100/1000 Mbps). The buit-in TCP server opens a socket on port 1024 and awaits a connection request from a remote TCP client. The TCP protocol ensures a proper flow control, without any underflow or overflow, as long as the TCP client sends data as fast as allowed by the TCP connection.

Stream1: transport stream received over GbE as 188-Byte UDP frames received at port 1025. The

sender is responsible controlling the throughput (and not overflowing the tx input buffer).

Stream2: PRBS-11 pseudo-random test sequence. Useful to measure Bit Error Rate at the receiving end.

Stream3: Byte counter.

Pseudo-Random Bit Stream (Test Pattern)

A periodic pseudo-random sequence can be used as stream2. A typical use would be for end-to-end biterror-rate measurement of a communication link. The sequence is 2047-bit long maximum length sequence generated by a 11-tap linear feedback shift register:

Sequence

Variable Coding & Modulation (VCM)

Streams are configured individually in terms of type, User Packet Length (UPL), null packet deletion, Input Stream SYnchronizer (ISSY), frame length, coding, modulation and pilot insertion.

Stream0: configuration is user defined in the GUI or through control registers.

Stream1: fixed configuration: transport stream, 188B frame, input stream synchronization, null packet detection, short frame n_{ldpc}=16200. Fixed MODCOD 4 (rate ½ coding, QPSK)

Stream2: fixed configuration: generic bit stream, not packetized, no input stream synchronization, no null packet detection, short frame n_{ldpc} =16200. Fixed MODCOD 12 (rate 3/5 coding, 8-PSK)

Stream3: fixed configuration:

transport stream, 188B frame, input stream synchronization, null packet detection, short frame n_{ldpc} =16200. Fixed MODCOD 18 (rate 2/3 coding, 16-APSK)

Output Spectrum

QPSK output spectrum 1MSymbols/s (output of COM-4009 RF modulator, 2.175GHz)

Load Software Updates

From time to time, ComBlock software updates are released.

To manually update the software, highlight the ComBlock and click on the Swiss army knife button.

The receiver can store multiple personalities. The list of personalities stored within the ComBlock Flash memory will be shown upon clicking on the Swiss army knife button.

ComBlock Control Center							
Hie Operations Functions Heip							
× × 🗉 🖋				_			
СОМ5003 Т	CP-IP	/ USB (GATE	WAY			
-COM800	сом500	3 TCP-IP / I	USB GAT	EWAY			×
COMI	Personalit	ies	Online	Defeult	A such assisted	Darah Duahartian	مطلبهم
	1	1400	B	Derault	Yes	Yes	0
	2	5003	В		Yes	No	262144
- 001	3	5003	В	D	Yes	No	524288
	4		B		Yes Ves	No	0
Ŭ,	6	0000	в		Yes	No	õ
	7		в		Yes	No	0
Ň	Add/Remo	ove/Modify Per	sonality-				
	Index	Personality	Option	Password			
	3 🗸	5003	В		Set Def	ault Add	l/Modify
	- ~						<u> </u>
				Clo	se		
"							6
							1
1							
172.16.1.128							

The default personality loaded at power up or after a reboot is identified by a 'D' in the Default column. Any unprotected personality can be updated while the Default personality is running. Select the personality index and click on the "Add/Modify" button.

ComBlock Control Center
File Operations Functions Help
🔆 🔌 📽 蘂 🕕 🖢 🕮 🚇
COM5003 TCP-IP / USB GATEWAY
Select FPGA Configuration File Source for
Select Source
O Internet download
Download from local file
Ok Cancel

The software configuration files are named with the .bit extension. The bit file can be downloaded via the Internet, from the ComBlock CD or any other local file.

The option and revision for the software currently running within the FPGA are listed at the bottom of the advanced settings window.

Recovery

This module is protected against corruption by an invalid FPGA configuration file (during firmware upgrade for example) or an invalid user configuration. To recover from such occurrence, connect a jumper in J3 and during power-up. This prevents the FPGA configuration and restore USB communication [LAN communication is restored only if the IP address is known/defined for the personality index selected as default]. Once this is done, the user can safely re-load a valid FPGA configuration file into flash memory using the ComBlock Control Center.

UDP Reset

Port 1029 is open as a UDP receive-only port. This port serves a single purpose: being able to reset the modem (and therefore the TCP-IP connection) gracefully. This feature is intended to remedy a common practical problem: it is a common occurrence for one side of a TCP-IP connection to end abnormally without the other side knowing that the connection is broken (for example when a client 'crashes'). In this case, new connections cannot be established without first closing the previous ones. The problem is particularly acute when the COM-1808 is at a remote location.

The command "@001RST<CR><LF>" sent as a UDP packet to this port will reset all TCP-IP connections within the COM-1808.

TCP-IP connections can also be cleared remotely from the ComBlock Control Center as illustrated below:

🔁 ComBlock Control Center			
File	Operations Functions	Help	
- Sal	Communication Setup	Ctrl+S	
<u>~</u>	Detect ComBlocks	Ctrl+D	
	Settings	Ctrl+E	
	Personalities	Ctrl+M	
	Status Registers	Ctrl+R	
	TCPReset TCP/IP Cor	nnection.	
Reset TCP/IP Connection			
Enter the IP-address of the ComBlock that you would like to reset: 172 16 11 130			
	Cancel		

Troubleshooting Checklist

1. The module is performs self-checks at power

up. Click on 1 to display the status registers. Properly operating hardware will result in the following sequence being displayed: SREG0-SREG8 = 01 F1 1D xx 1F 93 10 00 22.

- 2. Check status register SREG4 bits 0-5: if not 111111, the power supply voltage may be outside the nominal range of 4.9 to 5.5V.
- 3. Demodulator can't achieve lock even at high signal-to-noise ratios:
 - Make sure the modulator baseband I/Q signals do not saturate, as such saturation would strongly distort the modulation phase information.

VHDL code

The FPGA code is written in VHDL. It does not use any IP core or third-party software.

It occupies the following FPGA resources (when including modulator, demodulator, turbo code, AWGN):

Operating input voltage range

Supply voltage	+4.5V min, +12V max		
	650mA typ.		

Absolute Maximum Ratings

Supply voltage	-0.5V min, +20V max
98-pin connector inputs	-0.5V min, +3.6V max

Important:

The I/O signals connected directly to the FPGA are NOT 5V tolerant!

Mechanical Interface

Schematics

The board schematics are available on-line at http://comblock.com/download/com_1800schematics.pdf

Pinout

USB

The USB port is equipped with mini type AB connectors. (G = GND). The COM-1808 acts as a USB device.

Right Connector J8

Тор		Bottom
	A1 B1	
DAC_SAMPLE_CLK_IN		ADC1_SAMPLE_CLK_IN
		ADC1_DATA_IN(13)
DAC1_DATA_OUT(15)		ADC1_DATA_IN(12)
DAC1_DATA_OUT(14)		ADC1_DATA_IN(11)
DAC1_DATA_OUT(13)		GND
DAC1_DATA_OUT(12)		ADC1_DATA_IN(10)
DAC1_DATA_OUT(11)		ADC1_DATA_IN(9)
DAC1_DATA_OUT(10)		ADC1_DATA_IN(8)
DAC1_DATA_OUT(9)		ADC1_DATA_IN(7)
DAC1_DATA_OUT(8)		ADC1_DATA_IN(6)
DAC1_DATA_OUT(7)		ADC1_DATA_IN(5)
DAC1 DATA OUT(6)		ADC1 DATA IN(4)
DAC1 DATA OUT(5)		ADC1 DATA IN(3)
DAC1 DATA OUT(4)		ADC1 DATA IN(2)
DAC1 DATA OUT(3)		ADC2 SAMPLE CLK IN
DAC1 DATA OUT(2)		ADC2 DATA IN(13)
DAC1 DATA OUT(1)		ADC2 DATA IN(12)
DAC1 DATA OUT(0)		ADC2 DATA IN(11)
DAC_SAMPLE_CLK_OUT_P		ADC2_DATA_IN(10)
DAC_SAMPLE_CLK_OUT_N		GND
DAC2_DATA_OUT(15)		ADC2_DATA_IN(9)
DAC2_DATA_OUT(14)		ADC2_DATA_IN(8)
DAC2_DATA_OUT(13)		ADC2_DATA_IN(7)
DAC2_DATA_OUT(12)		ADC2_DATA_IN(6)
DAC2_DATA_OUT(11)		ADC2_DATA_IN(5)
DAC2_DATA_OUT(10)		ADC2_DATA_IN(4)
DAC2_DATA_OUT(9)		ADC2_DATA_IN(3)
DAC2_DATA_OUT(8)		ADC2_DATA_IN(2)
DAC2_DATA_OUT(7)		ADC_SAMPLE_CLK_OUT
DAC2_DATA_OUT(6)		ADC_SAMPLE_CLK_OUT
DAC2_DATA_OUT(5)		GND
DAC2_DATA_OUT(4)		
DAC2_DATA_001(0)		
	FF	
		GND
M&C_TX		M&C_RX
	A49 B49	9 130004

2*16-bit output samples, 2*12-bit input samples. This interface is compatible with the COM-3504 dual Analog<->Digital Conversions. (-C firmware option)

Right Connector J8

This interface is compatible with the COM-4009 RF modulator (-D firmware option)

I/O Compatibility List

(not an exhaustive list)

Right connector (J9)
<u>COM-3504</u> Dual Analog <-> Digital Conversions
2*16-bit 250 MSamples/s
COM-4009 400 MHz – 4.4 GHz Broadband RF
modulator

Configuration Management

This specification is to be used in conjunction with VHDL software revision 1 and ComBlock control center revision 4.03b and above.

It is possible to read back the option and version of the FPGA configuration currently active. Using the ComBlock Control Center, highlight the COM-1808 module, then go to the advanced settings. The option and version are listed at the bottom of the configuration panel.

For the latest data sheet, please refer to the **ComBlock** web site: <u>http://www.comblock.com/download/com1808.pdf</u>. These specifications are subject to change without notice.

For an up-to-date list of **ComBlock** modules, please refer to <u>http://www.comblock.com/product_list.html</u>.

Reference documents

[1] DVB-S2 specifications, ETSI EN 302 307-1 V1.4.1 (2014-11)

[2] DVB-S2 Extensions (DVB-S2X) specifications ETSI EN 302 307-2 V1.1.1 (2015-02)

Acronym	Definition
ACM	Adaptive Coding and Modulation
AWGN	Additive White Gaussian Noise
CCM	Constant Coding and Modulation
CTS	Clear-To-Send flow control flag
DDR	Dual Data Rate
DVB	Digital Video Broadcasting
FPGA	Field Programmable Gate Array
GS	Generic Stream
GbE	Gigabit Ethernet
ISSY	Input Stream SYnchronizer
LSb	Least Significant bit in a word
MSb	Most Significant bit in a word
RF	Radio Frequency
SRRC	Square Root Raised Cosine
	(filter)
TS	Transport Stream
tx	Transmit
UPL	User Packet Length
VCM	Variable Coding and Modulation

Acronyms

ComBlock Ordering Information

COM-1808_TX DVB-S2 digital transmitter

ECCN: EAR99

MSS • 845 Quince Orchard Boulevard Ste N• Gaithersburg, Maryland 20878-1676 • U.S.A. Telephone: (240) 631-1111 E-mail: sales@comblock.com