
 COM-1232 CHANNEL EMULATOR

MSS • 18221 Flower Hill Way #A • Gaithersburg, Maryland 20879 • U.S.A.
Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com

© MSS 2006 Issued 3/23/2006

Key Features
• Channel emulator with analog input and output.
• Typical applications:

o Power line channel emulator
o Wireless channel emulator.

• Sampling rate: 64 Msamples/s.
• Multi-path:

o Up to 40 paths
o each path is modeled as a delay (0 to

1023 samples) and a 18-bit precision
amplitude scaling coefficient.

• Additive signal from optional arbitrary
waveform generator.

• ComScope –enabled: key internal signals
can be captured in real-time and displayed on
host computer.

• Connectorized 3”x 3” module for ease of
prototyping. Standard 40 pin 2mm dual row
connectors (left, right, bottom). Single 5V
supply with reverse voltage and overvoltage
protection. Interfaces with 3.3V LVTTL logic.

For the latest data sheet, please refer to the ComBlock
web site: www.comblock.com/download/com1232.pdf.
These specifications are subject to change without notice.

For an up-to-date list of ComBlock modules, please
refer to www.comblock.com/product_list.htm .

COM-1232

Typical Configurations

Stand-Alone
The channel emulator 40 delays and 40 coefficients
are programmed in real-time over a USB
connection from a host computer. Best real-time
performances are obtained when the parameters are
set by custom software programs (see template). A
graphical user interface is also supplied.

COM-1232
Channel
Emulator

Input
Analog
Signal

PC

USB

Output
Analog
Signal

- control multi-path
 delays & coefficients

http://www.comblock.com/download/com1232.pdf
http://www.comblock.com/product_list.htm

Multi-Path & Additive Waveform

COM-8001
256MB/1GB
DRAM
Storage

COM-1232
Channel
Emulatorclk

Input
Analog
Signal

COM-5003
TCP-IP /
USB
Gateway

PC

USB or
TCP-IP

additive
signal

Output
Analog
Signal

14

- control multi-path
 delays & coefficients
- upload additive
 signal waveform

A more complex channel emulator can be
assembled using the COM-8001 arbitrary waveform
generator. Large files representing 10-bit precision
analog sampled signals can be uploaded through the
COM-5003 to the COM-8001 SDRAM memory,
then played back at the selected speed (up to 64
Msamples/s). The resulting signal is added to the
COM-1232 output.

Functional Block Diagram

10-bit
A/D

Converter

Differential
Analog

Input

64
MSamples/s

AGC
Gain

Control

Delay Line
0 - 1023
samples

W0

Delay Line
0 - 1023
samples

W1

Delay Line
0 - 1023
samples

W15

...

Σ

Delay Line
0 - 1023
samples

W16

Delay Line
0 - 1023
samples

W17

Delay Line
0 - 1023
samples

W40

...

Σ 12-bit
D/A

Converter

64
MSamples/s

Differential
Analog
Output

Additive
Signal
(External
Digital)

10

Σ

 2

http://www.comblock.com/com8001.htm

 3

Electrical Interface

Analog Input Interfaces
(J7)

Definition

RX_P / RX_N Differential analog inputs.
(_P for +, _N for -).
200 Ohm input impedance.
2Vpp differential (1Vpp on
each RX_P and RX_N
signal) for full scale 10-bit
ADC conversion.
Common-mode voltage is
approximately 2.3V. It is
recommended that the input
be AC coupled.

RX_AGC1 Output. When this channel
emulator is connected
directly to an analog
receiver, it generates an
analog 0 – 3.3V signal to
control the analog gain prior
to A/D conversion. The
purpose is to use the
maximum dynamic range
while preventing saturation
at the A/D converter.
0 is the maximum gain,
+3.3V is the minimum gain.
Pin J7/A6.

External Digital Input
(J4)

Definition

DATA_ P1_ IN[9:0]
DATA_ P2_IN[9:0]

Real input signal to be
added to the emulator
output. For speed reasons,
two input samples are
supplied in parallel. 10-bit
precision, unsigned format.
Bit 9 is the most significant
bit. The data source is
expected to send
DATA_Px_IN at the falling
edge of CLK_IN while this
module will sample it at the
rising edge.

CLK_IN Input synchronous clock.
Read the two samples
DATA_P1_IN and
DATA_P2_IN at the rising
edge of CLK_IN. Maximum
frequency 40 MHz (i.e. 80
MSamples/s).

TRIGGER_IN Input pulse indicating the
first sample from a COM-
8001 arbitrary waveform
generator. Useful as trigger
to ComScope.

SAMPLE_CLK_REQ_OUT Flow control output.
Requests samples from an
external data source.

Analog Output
Interfaces (J7)

Definition

TX_P / TX_N Differential outputs. (_P for
+, _N for -). Full range
2Vpp differential (1Vpp on
each TX_P and TX_N
signal). Common mode
voltage is approximately
1V.
Output impedance 100
Ohm.

Monitoring
& Control

Definition

USB 2.0 Type B receptacle. This interface is
used only for monitoring and control.
Use USB 2.0 approved cable for
connection to a host computer.
Maximum recommended cable length is
3’.

Power
Interface

4.75 – 5.25VDC. Terminal block. Power
consumption is approximately
proportional to the symbol clock rate
(fsymbol_clk). The maximum power
consumption is 650mA.

Important: Digital I/O signals are 0-3.3V
LVTTL. Inputs are NOT 5V tolerant!

Configuration
Complete assemblies can be monitored and
controlled centrally over a single USB, or, when
available through adjacent ComBlocks, LAN/TCP-
IP , asynchronous serial, or CardBus connection.

Users can access the full set of configuration
features by specifying 8-bit control registers as
listed below. In general, the control registers are to
be set manually through the ComBlock Control
Center or by software using the ComBlock API (see
www.comblock.com/download/M&C_reference.pd
f . In the specific case of the COM-1232, the multi-
paths delays and amplitude scaling coefficients are
expected to be controlled dynamically through a
user-developed custom application program. A C-
language code template is provided to help
developers in this task.

Control registers REG0 through REG3 are
read/write. Their contents is stored in non-volatile

http://www.comblock.com/download/M&C_reference.pdf
http://www.comblock.com/download/M&C_reference.pdf

memory. Control registers REG4 through REG173
are write-only and stored in volatile memory.

Undefined control registers or register bits are for
backward software compatibility and/or future use.
They are ignored in the current firmware version.

Inputs
Parameters Configuration
Rx ADC gain The analog signal prior to the built-in

A/D converter can be amplified by steps
of about 1 dB. This 5-bit unsigned
integer controls the variable gain
between 0 and 20 dB.
REG0 = bits 4-0

AGC1
response time

The front-end AGC1 response time is
user controlled. The RX_AGC1 analog
gain control signal is updated as follows
0 = every sample,
1 = every 2 samples,
2 = every 4 samples,
3 = every 8 samples, etc….
20 = every 1 million samples.
Valid range 0 to 20.
REG1 bits 4-0

AGC1
enabled

Enable or disable the automatic gain
control for an external analog receiver.
0 = fixed at a preset level (see REG2)
1 = enabled
REG1 bit 7

Fixed gain Gain settings for an external analog
receiver. This setting is used when the
AGC1 must be disabled (for example
during receiver level measurements).
Unsigned 8-bit number.
REG2 bits 7-0.

External
additive input

Enable (1) or disable (0) the external
additive input signal.
REG3 bit 0

Channel Emulator
Parameters Configuration
Coefficient Wi Signed (2’s complement) 18-bit precision

coefficient. 40 coefficients are referred to
by their index i in the range 0 to 39.

The amplitude scaling coefficient Wi are
expressed as a numerical value in 1.17
fractional binary format, signed (meaning
one sign bit and 17 bits following the
decimal point). Unit gain is 0x1FFFF.

Unlike the other ComBlock
configuration registers, the coefficients
values are not stored in non-volatile
memory. API users should therefore use
the “SRT” Set Register Temporary
command. At power up, the coefficients
are zero.

REG10+4*i = Wi (7:0)
REG11+4*i = Wi (15:8)
REG12+4*i (1:0) = Wi (17:16)

Delay Di Delay expressed as number of samples.
Valid range 0 – 1023 samples.
Index i is in the range 0 to 39.
Unlike the other ComBlock
configuration registers, the delays values
are not stored in non-volatile memory.
API users should therefore use the
“SRT” Set Register Temporary
command. At power up, the delays are
zero.
REG12+4*i (7:2) = Di (5:0)
REG13+4*i (3:0) = Di (9:6)

Graphical user interface example for the

500x-8001-1232 assembly

ComScope Monitoring
Key internal signals can be captured in real-time
and displayed on a host computer using the
ComScope feature of the ComBlock Control
Center. The COM-1232 signal traces and trigger are
defined as follows:

Trace 1
signals

Format Nominal
sampling
rate

Buffer
length
(samples)

1: Input signal
from ADC

8-bit
signed
(8MSB/10)

fclk 512

2: Input signal
from left digital
connector

8-bit
signed
(8MSB/10)

fclk 512

Trace 2
signals

Format Nominal
sampling
rate

Capture
length
(samples)

1: Output signal
prior to DAC

8-bit
signed
(8MSB/12)

fclk 512

2: front-end
AGC
RX_AGC1

8-bit
unsigned
(8MSB/10)

Decimated
sampling
rate. See
AGC1

512

3: Intermediate
multi-path
signal (after 16
paths)

8-bit
signed
(8MSB/18)

fclk 512

Trigger
Signal

Format

1: Start of
arbitrary
waveform
sequence
(TRIGGER_IN)

Binary

Signals sampling rates can be changed under
software control by adjusting the decimation factor
and/or selecting the fclk processing clock as real-
time sampling clock.

In particular, selecting the fclk processing clock as
real-time sampling clock allows one to have the
same time-scale for all signals.

The ComScope user manual is available at
www.comblock.com/download/comscope.pdf.

ComScope Window Sample

Digital Test Points
Test points are provided for easy access by an
oscilloscope probe.

Digital Test
Point

Definition

TP1 Overflow detected while summing the
first 16 paths.

TP2 Overflow detected while summing the last
24 paths.

TP3 Overflow detected while adding the
external signal to the multi-path output..

TP4 Future use
TP5 Future use
TP6 Future use
TP7 Future use
TP8 Future use
TP9 Future use
TP10 Future use
DONE ‘1’ indicates proper FPGA configuration.
INITB Reference clock fclk / 8 = 8 MHz.

http://www.comblock.com/download/comscope.pdf

Operation

Compare
with
Threshold

Complex
input signal
magnitude

128
sample
average

Decimate

AGC

A/D

8-bit
DAC

pin
J7/A6

AGC1
response time
REG1

AGC1 principle

Additive External Signal
An external signal can optionally be added to the
channel output prior to digital-to-analog conversion
(see block diagram). This external signal is real,
sampled at 64 Msamples/s with 10-bit precision in
unsigned format. It is received exclusively through
the left J4 input connector.

The most flexible manner for generating such
additive signal is to use the COM-8001 arbitrary
waveform generator. Several other ComBlock
modules, in particular most ComBlock modulators,
are also compatible with this interface.

Fractional Representation

AGC1 Throughout this document, key signals are
described in fractional binary format denoted by
x.y. The total number of bits is x+y. The number of
bits representing the numerical value below the
decimal point is y. x denotes the number of bits
representing the numerical value above the decimal
point, including one bit for the sign in the case of
signed values.

Prior to being routed to the channel emulator, the
input signal is subject to automatic gain control.

The purpose of this AGC is to prevent saturation at
the input signal A/D converters while making full
use of the A/D converters dynamic range. The AGC
can be enabled or set at a fixed gain under software
control.

Examples:
Format Fractional

representation
Decimal
Equivalent

1.17
signed

0.10000000000000000 0.5

1.17
signed

1.10000000000000000 -0.5

The principle of operations is outlined below:

(a) The magnitude of the complex input
samples is computed and continuously
averaged over 128 samples.

(b) The average magnitude is compared with a
target magnitude threshold and the AGC
gain is adjusted accordingly. Users can
control the rate at which the gain control
value is updated (to prevent instabilities,
depending on the gain control slope and
linearity at the RF front-end). See control
register REG1.

Recovery
This module is protected against corruption by an
invalid FPGA configuration file (during firmware
upgrade for example) or an invalid user
configuration. To recover from such occurrence,
connect the BOOT pin to the nearby ground pin
using a jumper and power-up the module. Remove
the jumper after 3 seconds. The module will be
automatically configured with a boot configuration
which restores communications. This boot file is
un-erasable. Once this is done, the user can safely
restore the user configuration and/or re-load a valid
FPGA configuration file into flash memory using
the ComBlock Control Center.

(c) An 8-bit D/A converter generates the
analog gain control signal RX_AGC1 for
use by the external variable gain amplifiers.

Programming Template #1

A C-language template for programming the multi-paths delays and amplitude scaling coefficients is shown
below. The connection between the host computer and the ComBlock assembly is assumed to be over TCP-
IP/LAN.

/* --
template for configuring the COM-1232 40 paths parameters
 delay (0-1023 samples) and 18-bit amplitude scaling coefficient.

 The assembly comprises three ComBlocks:
 COM-5003 LAN/TCP-IP interface
 COM-8001 Arbitrary waveform generator
 COM-1232 Channel emulator

 Operation:
 Connect the COM-5003 (running option -B) to the LAN.
 Power up the assembly then run this program.
 The ComBlock Control Center cannot be used at the same time as
 both programs use the same IP port on the ComBlock.
--*/

#include <stdio.h>
#include "winsock2.h"
#define MAX_MESSAGE_LENGTH 273
short send_command(SOCKET, char*);

void main() {

 char sendbuf[MAX_MESSAGE_LENGTH];
 long W0, D0;
 unsigned char a;
 long total_bytes_sent = 0;

 // Initialize Winsock.
 WSADATA wsaData;
 int iResult = WSAStartup(MAKEWORD(2,2), &wsaData);
 if (iResult != NO_ERROR)
 printf("Error at WSAStartup()\n");

 // Create a socket.
 SOCKET m_socket;
 m_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 if (m_socket == INVALID_SOCKET) {
 printf("Error at socket(): %ld\n", WSAGetLastError());
 WSACleanup();
 return;
 }

 // Connect to a server.
 sockaddr_in clientService;

 clientService.sin_family = AF_INET;

// INSERT THE COM-5003 IP ADDRESS BELOW
 clientService.sin_addr.s_addr = inet_addr("172.16.1.130");
 // port 1028 is reserved for ComBlock monitoring and control.
 clientService.sin_port = htons(1028);

 if (connect(m_socket, (SOCKADDR*) &clientService, sizeof(clientService)) == SOCKET_ERROR) {
 printf("Failed to connect.\n");
 WSACleanup();
 return;
 }

 // Assign ComBlock IDs after power up.
 sprintf(sendbuf,"@000SAC001\r\n");
 send_command(m_socket, sendbuf);
 // assign ID 001 to the first module

 sprintf(sendbuf,"@001MFW9\r\n");
 send_command(m_socket, sendbuf);
 // forward messages to all ports

 sprintf(sendbuf,"@000SAC002\r\n");
 send_command(m_socket, sendbuf);
 // assign ID 002 to the first module

 sprintf(sendbuf,"@002MFW9\r\n");
 send_command(m_socket, sendbuf);
 // forward messages to all ports

 sprintf(sendbuf,"@000SAC003\r\n");
 send_command(m_socket, sendbuf);
 // assign ID 003 to the first module

 // Set Path amplitude scaling coefficient W0 and delay D0
 W0 = 0x000102; // 18-bit signed. format 1.17
 D0 = 512; // Delay
 a = (unsigned char)(W0 & 0x000000FF);
 sprintf(sendbuf,"@003SRT10%02X\r\n", a);
 send_command(m_socket, sendbuf);

 a = (unsigned char)((W0>>8) & 0x000000FF);
 sprintf(sendbuf,"@003SRT11%02X\r\n", a);
 send_command(m_socket, sendbuf);

 a = (unsigned char)((W0>>16) & 0x00000003);
 a |= (unsigned char)((D0 << 2) * 0x000000FC);
 sprintf(sendbuf,"@003SRT12%02X\r\n", a);
 send_command(m_socket, sendbuf);

 a = (unsigned char)((D0 >> 6) * 0x000000FF);
 sprintf(sendbuf,"@003SRT13%02X\r\n", a);
 send_command(m_socket, sendbuf);

 // close socket
 closesocket(m_socket);

 return;
}

/* send command actually comprises three transactions:
1) sending the original command
2) sending a dummy query
3) waiting for the dummy query's response
This is an indirect way to ensure that the rate at which commands are sent are neither
too slow nor too fast.
*/
short send_command(SOCKET m_socket, char* command){
 short message_length;
 char dummy_query[MAX_MESSAGE_LENGTH];
 char dummy_reply[MAX_MESSAGE_LENGTH];
 short total_bytes_sent = 0;
 short total_bytes_received = 0;

 // send command. Make sure all bytes are sent.
 message_length = strlen(command);
 total_bytes_sent = 0;
 while(total_bytes_sent != message_length){
 total_bytes_sent += send(m_socket, &command[total_bytes_sent], message_length-
total_bytes_sent, 0);
 }
 Sleep(5); // wait 5 ms before next command

 // dummy command
 sprintf(dummy_query,"@001GRG00\r\n");
 // send command. Make sure all bytes are sent.
 message_length = strlen(dummy_query);
 total_bytes_sent = 0;
 while(total_bytes_sent != message_length){
 total bytes sent += send(m socket, &dummy query[total bytes sent], message length-

total_bytes_sent, 0);
 }

 // wait for dummy command's response
 // response is 11-byte long.
 total_bytes_received = 0;
 while(total_bytes_received < 11){
 total_bytes_received += recv(m_socket, &dummy_reply[total_bytes_received], 11-
total_bytes_received, 0);
 }

 return strlen(dummy_reply);
}

Note: More information about Winsock programming can be found at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/finished_server_and_client_code.asp .
Be sure to include a reference to the Winsock2 library (WS2_32.lib) in the project release and/or debug settings.

Programming Template #2

A C-language template for generating binary files to load into the arbitrary waveform generator is shown below.
The main objective of this template code is to describe how to format (i.e. pack) 10-bit precision unsigned
samples into a byte-oriented binary file.
// com8001.cpp : Generates a (large) binary file for testing the COM-8001
// arbitrary waveform generator. The file consists of a real sinewave.
// Samples are unsigned, 10-bit precision, for interface
// with the COM-1232 channel emulator module.
// Change f (sinewave frequency), ilmax (number of samples),
// then re-compile.

#include <math.h>
#include <stdio.h>

// Declare a look-up table to "flip bitwise" 10-bit values (for example,
// 0101100001 will be become 1000011010 after a bitwise flip).
const unsigned short FLIP_VALUES_10_BITS [] =
{0,512,256,768,128,640,384,896,64,576,320,832,192,704,448,960,32,544,288,800,160,
672,416,928,96,608,352,864,224,736,480,992,16,528,272,784,144,656,400,912,80,592,
336,848,208,720,464,976,48,560,304,816,176,688,432,944,112,624,368,880,240,752,496,
1008,8,520,264,776,136,648,392,904,72,584,328,840,200,712,456,968,40,552,296,808,
168,680,424,936,104,616,360,872,232,744,488,1000,24,536,280,792,152,664,408,920,
88,600,344,856,216,728,472,984,56,568,312,824,184,696,440,952,120,632,376,888,248,
760,504,1016,4,516,260,772,132,644,388,900,68,580,324,836,196,708,452,964,36,548,
292,804,164,676,420,932,100,612,356,868,228,740,484,996,20,532,276,788,148,660,
404,916,84,596,340,852,212,724,468,980,52,564,308,820,180,692,436,948,116,628,372,
884,244,756,500,1012,12,524,268,780,140,652,396,908,76,588,332,844,204,716,460,972,
44,556,300,812,172,684,428,940,108,620,364,876,236,748,492,1004,28,540,284,796,
156,668,412,924,92,604,348,860,220,732,476,988,60,572,316,828,188,700,444,956,124,
636,380,892,252,764,508,1020,2,514,258,770,130,642,386,898,66,578,322,834,194,706,
450,962,34,546,290,802,162,674,418,930,98,610,354,866,226,738,482,994,18,530,274,
786,146,658,402,914,82,594,338,850,210,722,466,978,50,562,306,818,178,690,434,946,
114,626,370,882,242,754,498,1010,10,522,266,778,138,650,394,906,74,586,330,842,202,
714,458,970,42,554,298,810,170,682,426,938,106,618,362,874,234,746,490,1002,26,538,
282,794,154,666,410,922,90,602,346,858,218,730,474,986,58,570,314,826,186,698,442,
954,122,634,378,890,250,762,506,1018,6,518,262,774,134,646,390,902,70,582,326,838,
198,710,454,966,38,550,294,806,166,678,422,934,102,614,358,870,230,742,486,998,22,
534,278,790,150,662,406,918,86,598,342,854,214,726,470,982,54,566,310,822,182,694,
438,950,118,630,374,886,246,758,502,1014,14,526,270,782,142,654,398,910,78,590,334,
846,206,718,462,974,46,558,302,814,174,686,430,942,110,622,366,878,238,750,494,

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/finished_server_and_client_code.asp

1006,30,542,286,798,158,670,414,926,94,606,350,862,222,734,478,990,62,574,318,830,
190,702,446,958,126,638,382,894,254,766,510,1022,1,513,257,769,129,641,385,897,65,
577,321,833,193,705,449,961,33,545,289,801,161,673,417,929,97,609,353,865,225,737,
481,993,17,529,273,785,145,657,401,913,81,593,337,849,209,721,465,977,49,561,305,
817,177,689,433,945,113,625,369,881,241,753,497,1009,9,521,265,777,137,649,393,905,
73,585,329,841,201,713,457,969,41,553,297,809,169,681,425,937,105,617,361,873,233,
745,489,1001,25,537,281,793,153,665,409,921,89,601,345,857,217,729,473,985,57,569,
313,825,185,697,441,953,121,633,377,889,249,761,505,1017,5,517,261,773,133,645,389,
901,69,581,325,837,197,709,453,965,37,549,293,805,165,677,421,933,101,613,357,869,
229,741,485,997,21,533,277,789,149,661,405,917,85,597,341,853,213,725,469,981,53,
565,309,821,181,693,437,949,117,629,373,885,245,757,501,1013,13,525,269,781,141,
653,397,909,77,589,333,845,205,717,461,973,45,557,301,813,173,685,429,941,109,621,
365,877,237,749,493,1005,29,541,285,797,157,669,413,925,93,605,349,861,221,733,477,
989,61,573,317,829,189,701,445,957,125,637,381,893,253,765,509,1021,3,515,259,771,
131,643,387,899,67,579,323,835,195,707,451,963,35,547,291,803,163,675,419,931,99,
611,355,867,227,739,483,995,19,531,275,787,147,659,403,915,83,595,339,851,211,723,
467,979,51,563,307,819,179,691,435,947,115,627,371,883,243,755,499,1011,11,523,267,
779,139,651,395,907,75,587,331,843,203,715,459,971,43,555,299,811,171,683,427,939,
107,619,363,875,235,747,491,1003,27,539,283,795,155,667,411,923,91,603,347,859,219,
731,475,987,59,571,315,827,187,699,443,955,123,635,379,891,251,763,507,1019,7,519,
263,775,135,647,391,903,71,583,327,839,199,711,455,967,39,551,295,807,167,679,423,
935,103,615,359,871,231,743,487,999,23,535,279,791,151,663,407,919,87,599,343,855,
215,727,471,983,55,567,311,823,183,695,439,951,119,631,375,887,247,759,503,1015,15,
527,271,783,143,655,399,911,79,591,335,847,207,719,463,975,47,559,303,815,175,687,
431,943,111,623,367,879,239,751,495,1007,31,543,287,799,159,671,415,927,95,607,351,
863,223,735,479,991,63,575,319,831,191,703,447,959,127,639,383,895,255,767,511,1023};

int main(int argc, char* argv[])
{
 long il,ilmax;
 double f,pi,fs;
 unsigned short rsample1, rsample2, rsample3, rsample4;
 unsigned short rsample1_inv, rsample2_inv, rsample3_inv, rsample4_inv;
 FILE *stream;
 unsigned char fivebytes[5];
 short numwritten;

 ilmax = 32*100000; // size of file in sample size. Always a multiple of 32
 pi = 4.0 * atan(1.0); // define pi
 fs = 64000000.0; // sampling rate in Hz: 64 MSamples/s
 f = 5000000.; // sinewave frequency in Hz

 printf("Generating test file for the COM-8001 -> COM-1232\n");

 if((stream = fopen("binary_file.bin","w+b")) == NULL)
 printf("the file 'binary_file.dat' was not opened\n");

 // Waveform generation

 for(il = 0; il<ilmax; il += 4){

 // generate four 10-bit real samples and format (pack) into 5 bytes before
 // storing into a file

 rsample1 = (unsigned short)(sin(2.0*pi*f*il/fs) * 511.0 + 511.5);
 rsample2 = (unsigned short)(sin(2.0*pi*f*(il+1)/fs) * 511.0 + 511.5);
 rsample3 = (unsigned short)(sin(2.0*pi*f*(il+2)/fs) * 511.0 + 511.5);
 rsample4 = (unsigned short)(sin(2.0*pi*f*(il+3)/fs) * 511.0 + 511.5);

 // range 0.5 - 1023.5 (10-bit) unsigned

 // invert 10-bits MSB <-> LSB
 rsample1_inv = FLIP_VALUES_10_BITS[rsample1];
 rsample2_inv = FLIP_VALUES_10_BITS[rsample2];
 rsample3_inv = FLIP_VALUES_10_BITS[rsample3];
 rsample4_inv = FLIP_VALUES_10_BITS[rsample4];

 fivebytes[0] = (unsigned char)((rsample2_inv >> 2) & 0x00FF);
 fivebytes[1] = (unsigned char)((rsample2_inv << 6) & 0x00C0)
 | (unsigned char)((rsample1_inv >> 4) & 0x003F);
 fivebytes[2] = (unsigned char)((rsample1_inv << 4) & 0x00F0)
 | (unsigned char)((rsample4_inv >> 6) & 0x000F) ;
 fivebytes[3] = (unsigned char)((rsample4_inv << 2) & 0x00FC)
 | (unsigned char)((rsample3_inv >> 8) & 0x0003);
 fivebytes[4] = (unsigned char)((rsample3_inv) & 0x00FF);

 numwritten = fwrite(&fivebytes,1,5,stream);

 }

 fclose(stream);
 // Format conversion

 return 0;
}

Timing

Clocks
The clock distribution scheme embodied in the
COM-1232 is illustrated below.

Analog
Front-End
(ADCs/DACs)

DLL
x2

CLKOUT2*
64 MHz

FPGA

fclk
synchronous
processing
clock
64 MHz

60 MHz
low-jitter clock
from USB PHY

CLK_IN*
SAMPLE_CLK_IN

DATA_P1_IN

ADC complex
samples
64 Msamples/s

DAC complex
samples
64 Msamples/s

(*) denotes edge-trigger signal

DLL
x16/15

64 MHz
reference

x1/2

128 MHz
DAC clock

64 MHz
ADC clock

DATA_P2_IN

Elastic
Input
Buffer

SAMPLE_CLK_REQ_OUT

Baseline clock architecture

Yellow = 60 MHz reference clock
Blue = 40 MHz arbitrary waveform gen. clock

Brown = fclk 64 MHz processing zone

The core signal processing performed within the
FPGA is synchronous with the processing clock fclk.
In order to minimize clock jitter, the processing
clock is derived from a 60 MHz reference clock
with low-jitter. fclk is used for internal processing,
for generating the ADC and DAC sampling clocks
and for the external input additive signal.

Input
Input data is read at
the rising edge of CLK_IN

CLK_IN
SAMPLE_CLK_IN
DATA_IN

Best time to generate data
at the source is at the
falling edge of CLK_IN

Mechanical Interface

Top view

J4 J5

B20
A20

B1A1

Corner(0.000", 0.000")

A1 pin (0.100", 2.250")

corner (3.000", 3.000")

A20
B20

A1B1

(2.840", 0.160")

A1 pin (2.900", 2.250")

J1

Digital Inputs
2 rows x 20 pin
female, 90 deg

Digital Outputs
2 rows x 20 pin
male, 90 deg

Mounting hole

Mounting hole

J2

5VDC Power
Terminal
Block, 90 deg

1
10

Test points (J9)

(2.840", 2.840")
Mounting hole

(0.160",2.840")
Mounting hole

(0.160",0.160")

Mounting hole diameter: 0.125"

A1 pin height: 0.039"

Maximum height 0.500"

+5VGND

USB

B1
A1

B20
A20

Analog I/O
2 rows x 20 pin
male, 90 deg

A1 pin (2.250", 0.100")

J7

DONE

INIT

DLL LOCK

JTAG
J3

BOOT
GND
+3.3V

COM-1232

Schematics

Xilinx FPGA
XC3S2000-4

USB 2.0
PHY

USB 2.0
Controller
Flash
Memory
(FPGA
configurations)

Micro-
Controller

USB
Connector

USB Hub / PC

40
-p

in
 d

ig
ita

l I
/O to/from

other
ComBlocks

to/from
other
ComBlocks

Dual
10-bit ADC

Dual
12-bit DAC

3 Auxilary
DAC

2 Auxilary
ADC

40-pin analog I/O

40
-p

in
 d

ig
ita

l I
/O

to/from
other
ComBlocks

Temp
Sensor

Hardware Block Diagram

The board schematics are available on the
ComBlock CD-ROM supplied with the module and
on-line at
http://www.comblock.com/download/com_1200schemati
cs.zip

Pinout

USB
USB type B receptacle, as the COM-1232 is a USB
device.

Analog I/O Connector J7

A
1

B
1

A
20

B
20

GND

GND

M&C TX M&C RX

RX_N

NC

NC

TX_N

NC
GND

GND

GND

RX_P

NC

RX_AGC1

TX_P

NC

GNDGND

GNDGND

GND

GNDGND

GND

GNDGND

NC

NC NC
NC NC

GND
NC
NC NC
NC NC

NC NC

NC stands as “No Connect”

Input Connector J4

A
1

B
1

A
20

B
20

GND

GND

GND

CLK_IN SAMPLE_CLK_IN
DATA_P1_IN(9)
DATA_P1_IN(7)
DATA_P1_IN(5)
DATA_P1_IN(3)
DATA_P1_IN(2)
DATA_P1_IN(0)

DATA_P1_IN(8)
DATA_P1_IN(6)
DATA_P1_IN(4)

DATA_P1_IN(1)
DATA_P2_IN(9)
DATA_P2_IN(7)
DATA_P2_IN(5)

DATA_P2_IN(8)
DATA_P2_IN(6)
DATA_P2_IN(4)
DATA_P2_IN(3)
DATA_P2_IN(1)

DATA_P2_IN(2)
DATA_P2_IN(0)

GND

M&C RX M&C TX

TRIGGER_INSAMPLE_CLK_REQ_OUT

I/O Compatibility List
(not an exhaustive list)
Input
COM-8001 Arbitrary Waveform Generator

Configuration Management
This specification is to be used in conjunction with
VHDL software revision 1.

http://www.comblock.com/download/com_1200schematics.zip
http://www.comblock.com/download/com_1200schematics.zip
http://www.comblock.com/com8001.htm

ComBlock Ordering Information

COM-1232 Channel Emulator

MSS • 18221 Flower Hill Way #A •
Gaithersburg, Maryland 20879 • U.S.A.
Telephone: (240) 631-1111
Facsimile: (240) 631-1676
E-mail: sales@comblock.com

	Key Features
	Typical Configurations
	Stand-Alone
	Multi-Path & Additive Waveform

	Functional Block Diagram
	Electrical Interface
	Configuration
	�
	ComScope Monitoring
	Digital Test Points
	�
	Operation
	Additive External Signal
	AGC1

	Fractional Representation
	Recovery

	Programming Template #1
	Programming Template #2
	Timing
	Clocks
	Input

	Mechanical Interface
	Schematics
	Pinout
	USB
	Analog I/O Connector J7
	Input Connector J4
	I/O Compatibility List
	Configuration Management

	�
	ComBlock Ordering Information

