
COM-1209ASOFT HIGH-SPEED
DVB-S2 BCH CODE DECODER & ENCODER
VHDL SOURCE CODE OVERVIEW

Overview

 High-speed BCH block code encoder and
decoder for FPGAs. Also includes BER
tester and PRBS11 test sequence generator.

 Fully compliant with the DVB-S2 standard
ETSI EN 302 307

 Parallel I/Os and processing for high-speed
operation:

o 2.7 Gbits/s encoding [Xilinx
Ultrascale+]

o up to 1.7 Gbits/s decoding [Xilinx
Ultrascale+]]

 Corrects t = 8, 10 or 12 errors per block.
 Decoder flags frames with uncorrectable

errors.
 Decoder reports number of bit errors

corrected at the end of each decoded block.

Portable VHDL code
The code is written in generic standard VHDL and
is thus portable to a variety of FPGAs. The code
was developed and tested on a Xilinx 7-series
FPGA but is expected to work similarly on other
targets. No manufacturer-specific primitive is used.

Encoder

I/Os

8-bit parallel data input and output help maximize
the throughput. The first byte in the stream is
marked by a Start Of Frame (SOF) flag.

Flow control is ensured through the
SAMPLE_CLK_x_REQ signals which convey
“Clear To Send” information from the stream
recipient. The data source must immediately stop
sending data when the data sink clears this signal.

All inputs and outputs are synchronous with the
rising edge of the synchronous clock CLK.

Speed
FPGA Clock

(max)
Encoder
output
data rate
(max)

Xilinx Zynq Ultrascale+
-1 (slowest) speed grade

357 MHz 2.7 Gbits/s

Xilinx Artix7
-1 (slowest) speed grade

198 MHz 1.5 Gbits/s

Xilinx Virtex-5 131 MHz 1 Gbits/s
Xilinx Spartan-3 83 MHz 650 Mbits/s

A minimum guard time of at least (Nbch – Kbch)/8 + 2
clocks must be inserted between successive input
frames to let the encoder send the parity bits to its

MSS • 845-N Quince Orchard Boulevard • Gaithersburg, Maryland 20878 • U.S.A.
Telephone: (240) 631-1111 www.ComBlock.com

© MSS 2023 Issued 6/27/2023

http://www.ComBlock.com/

output. More generally, the data source should
check the flow control signal
SAMPLE_CLK_IN_REQ before sending any input
data to the encoder.

Device Utilization Summary
Device: Xilinx Artix7
Flip Flops 262
LUTs 620
36Kb BRAM 0
DSP 0
GCLKs 1

Decoder

I/Os

Speed
FPGA Clock

(max)
Decoder input data rate
(max)

Xilinx Zynq
Ultrascale+
-1(slowest)
speed grade

294 MHz 1.43 Gbits/s
(51840,51648,12)

1.7 Gbits/s
(58320,58192,8)

Xilinx
Virtex-5

166 MHz 810 Mbits/s
(51840,51648,12)

963 Mbits/s
(58320,58192,8)

Xilinx
Artix7 -
1(slowest)
speed grade

153 MHz 746 Mbits/s
(51840,51648,12)

886 Mbits/s
(58320,58192,8)

Xilinx
Spartan-3

73 MHz 356 Mbits/s
(51840,51648,12)

423 Mbits/s
(58320,58192,8)

The decoder architecture is such that the three
decoding stages are pipelined and the input data is
stored in a 128 Kbits elastic buffer until the error
locations are found. Therefore, it is possible to input
a new frame even before the previous one is
completely decoded.

The processing time budget for each decoding stage
can be expressed as follows:

1. syndrome computation: 16.5 * t clocks.

2

2. error location polynomial: 328 * t clocks in
the worst case, when t errors are present in
the received frame.

3. factoring the error location polynomial
before the first output byte: (216 – Nbch)/8 +
4 clocks for GF(216)

4. Output: Kbch/8 clocks

Using the above information, one can compute the
maximum decoding speed for each DVB-S2 BCH
code variant. For example, the best decoding speed
for the (51840,51648,12) code is 51840/8 + (16.5 +
328)*12 = 10614 clocks per frame.

Device Utilization Summary

Device: Xilinx Artix7
Flip Flops 5395
LUTs 5442
36Kb BRAM 4.5
DSP 0
GCLKs 1

DVB-S2 BCH
The DVB-S2 standard lists includes 21 variants of
long BCH codes. Each variant is identified by its
code block size Nbch, uncoded block size Kbch, error
correction capability t and frame type.

The VHDL code implements all 21 variants listed
in tables 5a and 5b of the specifications [1].

Examples (see [1] for complete list)
Kbch Nbch t Frame
16008 16200 12 normal
51648 51840 12 normal
53840 54000 10 normal
58192 58320 8 Normal
3072 3240 12 short

The codes for normal frames are computed in
GF(216), whereas the short frame codes are
computed over GF(214).

The primitive polynomials used to generate the
Galois fields are
x16 + x5 + x3 + x2 + 1 for GF(216) and
x14 + x5 + x3 + x + 1 for GF(214)

Matlab:
Primpoly(16,’min’)
Primpoly(14,’min’)

The specification document lists the 12 minimum
polynomials gi(x) for GF(216) and GF(214) in tables
6a and 6b respectively.

By multiplying the first 8, 10 or 12 minimum
polynomials, we can construct the generator
polynomials for four configurations: GF(216)
t=8,10,12 and GF(214) t=12.
The resulting generator polynomials can be
represented by their binary coefficients as listed
below:

constant GENPOLY0:
std_logic_vector(128 downto 0) :=
"1" & x"1c07255f712797bd19fc6d7504f9662B";

constant GENPOLY1:
std_logic_vector(160 downto 0) :=
"1" &
"60150CEDFC2A331F6A785703EFD12301B8BB6591"
;

constant GENPOLY2:
std_logic_vector(192 downto 0) := "1" &

3

x"4E260E83845C511C50CF2CD8DC350889034785F7
660255E7";

constant GENPOLY3:
std_logic_vector(168 downto 0) := "1" &
x"4062DBEA9869B262CD23A39069528FE7D7D11905
A5";

The encoder uses these generator polynominals to
generate the (Nbch – Kbch) parity bits appended to the
Kbch input data bits. As described in section 5.3.1 of
the DVB-S2 specifications [1], the parity bits are
the remainder of a polynomial division of the
shifted input bits by the generator polynomial.

DVB-S2 BCH Decoding
Decoding a BCH block is done in three steps.

1. compute the syndromes
2. derive the error location polynominal
3. find the roots of the error location

polynominal and correct the bit errors.

Syndromes
To compute a syndrome Si , one must first divide
the input block by the twelve polynomials gj(x),
where gj(x) represent the minimum polynomials of
i .for i = 1 to 2t (see table below). The twelve
minimum polynomials gj(x) are listed in the DVB-
S2 specifications in Tables 6a and 6b.

The remainder bj(x) is then evaluated for i as
Si = bj(i).

The roots of gj(x) are as follows:
Minimum polynomial gj(x) Roots i

g1(x) , 2, 4, 8, 16

g2(x) 3, 6, 12, 24

g3(x) 5, 10, 20

g4(x) 7, 14

g5(x) 9, 18

g6(x) 11, 22

g7(x) 13

g8(x) 15

g9(x) 17

g10(x) 19

g11(x) 21

g12(x) 23

When a received frame is error-free, all syndromes
are zero.

Verifying the syndrome computation is easy.
Assumming two bit errors at locations 16191 and
16184 (with bit locations being numbered from
Nbch-1 (first bit received) to 0), then
S1 = 16191 + 16184

S2 = (16191)2 + (16184)2

S3 = (16191)3 + (16184)3

…
S2t = (16191)2t + (16184)2t

Matlab:
prim_poly16 = primpoly(16,’min’);
alpha = gf(2,16,prim_poly16);

4

s1 = alpha^16191 + alpha^16184;
s2 = (alpha^16191)^2 + (alpha^16184)^2
s3 = (alpha^16191)^3 + (alpha^16184)^3
…
s24 = (alpha^16191)^24 + (alpha^16184)^24

Error Location Polynomial
The Berlekamp-Massey algorithm is implemented
to find the error location polynomial.
(x) = (1+L1x) (1+L2x) (1+L3x) (1+L4x)…
where Li are the error locations.
At the end of this step, the error location
polynomial is expressed as
(x) = + x+ x2 + x3 + …

Comparing the VHDL simulation with Matlab is
easy. Let us assume two bit errors at locations
16191 and 16184 (with bit locations being
numbered from Nbch-1 (first bit received) to 0), then
the error location polynomial is computed by
expanding (1+16191x) (1+16184x)

Matlab:
prim_poly16 = primpoly(16,’min’);
alpha = gf(2,16,prim_poly16);
p1 = [alpha^16191 1];
p2 = [alpha^16184 1];
elp = conv(p1,p2);

Factoring and Error Correction
Chien’s search circuit [3] is used to factor the error
location polynomial (x). While the data bit at
location Li is streamed to the output, the algorithm
assesses whether Li is a root of (x). If so, it is
erroneous and is corrected.

128Kbits of block RAM is used as elastic buffer to
temporarily store the received bits while error
decoding takes place.

Reference documents

[1] ETSI EN 302 307, Section 5.3 FEC encoding

[2] “Shift-Register Synthesis and BCH Decoding”,
James L. Massey, IEEE Transactions on
Information Theory, January 1969.

[3] “Error Control Coding, Fundamentals and
Applications”, Shu Lin / Daniel Costello.

5

Flow Control
The decoder input first goes through an input elastic buffer to regulate the flow.
The buffer output data flow is sent to two components: the syndrome computation bch_syndromes.vhd and the
error correction bch_ec.vhd. Thus, both components are able to control the data flow from the input elastic
buffer using their flow control signals SAMPLE0A_CLK_REQ and SAMPLE0B_CLK_REQ respectively.

Syndromes computation is performed on the fly. Upon reading the last frame byte from the input elastic buffer,
bch_syndromes.vhd exercises its SAMPLE0A_CLK_REQ flow control signal to immediately stop the input
flow before a new start of frame. The end of syndromes computation is marked by the availability of the
syndromes (SYNDROME1 through 24) and a pulse SYNDROME_SAMPLE_CLK. At this point
bch_syndromes.vhd is ready for the next input frame.

The syndromes are passed to bcherrorlocator.vhd to compute the error location polynomials. The computation
is triggered by the SYNDROME_SAMPLE_CLK pulse and ends at the ELP_CLK pulse. The resulting error
location polynomials are available in ELP1 through 12. In the special case of an error-free frame, there is no
need to compute the error location polynomials. The ALL_ZERO_SYNDROMES net goes high when this
happens.

The final decoding step, error correction, is implemented within the bch_ec.vhd component. This component
includes a 128 Kbit elastic buffer large enough receive a new frame while processing the previous one. The
purpose of the SAMPLE0B_CLK_REQ flow control flag is stop the input data flow unless at least 1/32th of the
internal elastic buffer is available.

Typical bch_dec.vhd capture. Includes input frames with correctable and uncorrectable errors.

The flow control is primarily located within bch_ec.vhd. It is a little bit complex. There are five key events in
the life of a BCH frame decoding, in the order of occurrence:

6

- input start of frame pulse SOF_IN
- received all input data (excluding parity bits) INPUT_DATA_COMPLETE
- syndrome ready pulse SYNDROME_SAMPLE_CLK
- error location ready pulse ELP_CLK_IN
- all decoded bytes sent out OUTPUT_DATA_COMPLETE

Note: the error location computation is skipped if ALL_ZERO_SYNDROMES is high.

7

Typical bch_ec.vhd capture. Includes frames with correctable and uncorrectable errors.

8

VHDL software hierarchy
The code is stored with one, and only one, entity
per file.

Encoder

Decoder

The decoder hierarchical structure reflects the three
successive decoding steps:

1. bch_syndromes.vhd: compute the
syndromes

2. bcherrorlocator.vhd: derive the error
location polynominal

3. bch_ec.vhd: find the roots of the error
location polynominal and correct the bit
errors.

Clock / Timing
The software uses a single master clock (CLK)
which serves as input clock, output clock and signal
processing clock.

Test Benches
Several test benches are included for end-to-end
and component-level VHDL simulation:

 /sim/tbbchencdec2.vhd: end-to-end
simulation including encoder, decoder and
added bit errors.

Software Licensing
The COM-1209ASOFT is supplied under the
following key licensing terms:

1. A nonexclusive, nontransferable license to
use the VHDL source code internally, and

2. An unlimited, royalty-free, nonexclusive
transferable license to make and use products
incorporating the licensed materials, solely in
bit stream format, on a worldwide basis.

The complete VHDL/IP Software License
Agreement can be downloaded from
http://www.comblock.com/download/softwarelicense.pdf

Configuration Management
The current software revision is 5b.

Directory Contents

/doc Specifications, user manual, implementation
documents

/src .vhd source code,.pkg packages, .xdc
constraint files (Xilinx)
One component per file.

/sim VHDL test benches

/matlab Matlab .m file for simulating the encoding
and decoding algorithms, for generating
stimulus files for VHDL simulation and for
end-to-end BER performance analysis at
various signal to noise ratios

Project files:
Xilinx Vivado v2020 project file: project_1v2020.xpr
tcl: project_1_v2020.tcl

VHDL development environment
The VHDL software was developed using the
following development environment:

(a) Xilinx Vivado 2020 for synthesis, place and
route and VHDL simulation

ComBlock Ordering Information

COM-1209ASOFT High-speed DVB-S2 BCH
encoder & decoder. VHDL source code IP core

ECCN: EAR99

Contact Information
MSS • 845-N Quince Orchard Boulevard •
Gaithersburg, Maryland 20878-1676 • U.S.A.
Telephone: (240) 631-1111
E-mail: info@comblock.com

http://www.comblock.com/download/softwarelicense.pdf

	COM-1209ASOFT HIGH-SPEED DVB-S2 BCH CODE DECODER & ENCODER VHDL SOURCE CODE OVERVIEW
	Overview
	Portable VHDL code
	Encoder
	I/Os
	Speed
	Device Utilization Summary

	Decoder
	I/Os
	Speed
	Device Utilization Summary

	DVB-S2 BCH
	DVB-S2 BCH Decoding
	Syndromes
	Error Location Polynomial
	Factoring and Error Correction

	Reference documents
	Flow Control

	VHDL software hierarchy
	Encoder

	
	Decoder

	Clock / Timing
	Test Benches
	Software Licensing
	Configuration Management
	VHDL development environment
	ComBlock Ordering Information
	Contact Information

