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DIGITAL SIGNAL PROCESSING (DSP) APPLICA-
tions often require computing speeds that cannot be achieved
by standard signal processor implementations. In this case the
use of customized dataflow processors is necessary to meet the
given requirements. This requires a careful examination of al-
gorithms in order to find an architecture appropriate for Very
Large-Scale Integration (VLSI) implementation. The vast in-
crease in gate density and the ability to build increasingly larg-
er chips not only enables the integration of whole systems on
one Application Specific Integrated Circuit (ASIC) but also al-
lows the implementation of massive parallel processors to
achieve a speedup by orders of magnitude for high data rate ap-
plications.

To obtain a high-speed implementation of an algorithm
first, the maximum inherent parallelism needs to be extracted.
Then, the algorithm has to be mapped onto a parallel architec-
ture, e.g., by standard signal-flow analysis or algebraic methods
[1-5].

Generally, a high throughput-rate is achieved if the circuit
has a very short critical path. The critical path of a synchro-
nous circuit is that path between two buffers (e.g., flip-flops)
that has the largest delay and hence, determines the maximum
achievable clock frequency of the circuit. This shows the im-
portance of the critical path for high-speed circuit design. The
whole circuit therefore needs to be examined carefully to ob-
tain a short critical path. If the critical path is in a feedforward
section of the circuit, it often can be shortened substantially by
introducing pipelining, i.e., by dividing the path by adding
buffers according to rules [6] [7]. In this case, a new critical
path arises somewhere else in the circuit, which might be elimi-
nated by the same means.

By carrying out this procedure three points need to be kept
in mind. First, it is desirable to design circuits such that all
paths between two buffers are almost critical. In this case, high
efficiency of the logic utilization is obtained.

Second, the maximum achievable clock frequency is always
upper bounded by physical constraints of the implementation
technology used. This is especially important if fairly complex
algorithms need to be implemented for high-speed applica-
tions, since the complexity of the algorithm requires the use of
very dense and power efficient technology like Complementa-
ry Metal Oxide Semiconductor (CMOS), that however, has a
fairly low maximum clock frequency. A solution to this prob-
lem is found if additional parallelism can be introduced to the
algorithm such that it can be mapped onto a block processing
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Fig. 1. Principle scheme of block processing. Each block of data (of
length M) is processed in parallel.

scheme (see Figure 1). In a block processing scheme, the in-
coming data is serial-to-parallel converted in blocks of length
M. Each block then is processed in paraliel by the following cir-
cuit. In this case, only the serial/parallel and parallel/serial con-
verters need to be realized with high-speed technology such as
Emitter Coupled Logic (ECL) or gallium arsenide (GaAs)
whereas the complex algorithm can operate at a 1/M lower
clock frequency, and therefore, can be implemented e.g., with
CMOS circuits.

Third, the critical path very often occurs in a feedback loop
and cannot be made uncritical by introducing pipelining. In
this case, it presents a bottleneck for high-speed implementa-
tions that needs to be examined more closely to find transfor-
mations that allow either an introduction of pipelining or the
derivation of block-processing architectures.

An example of a fairly complex algorithm that needs to be
implemented for high-speed applications is the Viterbi Algo-
rithm (VA). We want to show that even though the VA con-
tains a nonlinear data-dependent feedback loop, additional
parallelism can be introduced to derive efficient high-speed
parallel architectures. Three levels exist to introduced parallel-
ism, the bit-, word-, and algorithm-level [8]. Recently solutions
were found for the VA at all three levels. After recalling the VA
and the state of the art of its implementation in the next sec-
tion, Implementing the Viterbi Algorithm, it is shown how ad-
ditional parallelism can be introduced at the bit-, word-, and
algorithm-levels. An extensive presentation of the results dis-
cussed here can be found in the book by G. Fettweis [9].
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b. Decoding the optimum path to node s, , , » at time k+ 1 and
paths showing that they merge when traced back D steps.

Fig. 2. Examples of trellis and optimum paths.

Implementing the Viterbi Algorithm

Dynamic programming is a well-established approach fora
large variety of problems concerning multistage decision pro-
cesses [10]. One specific application of dynamic programming
is the search for the best path through a graph of weighted
branches. These branch weights will hereafter be referred to as
branch metrics. The path through the graph to be found, is the
one with the maximum (or minimum) cost, i.e., the maximum
value of accumulated branch metrics. An example of such a
graph is the trellis (the state transition diagram) of a discrete-
time finite state machine. The state sequence of the finite state
machine marks a path through the trellis. If this path is to be es-
timated with the help of noisy measurements of the output of
the finite state machine, and if this is solved by dynamic pro-
gramming, then in communications this is called the VA [11].
The VA was introduced in 1967 as a method to decode
convolutional codes [12]. In the meantime the VA has found
widespread applications in communications as e.g., in digital
transmission, magnetic recording, and speech recognition. A
comprehensive tutorial on the VA is given [13]. A brief intro-
duction to the VA will be discussed.

The Viterbi Algorithm

Given: a discrete-time finite state machine with N states.
Without loss of generality we assume that the transition dia-
gram and the transition rate 1/T are constant in time. The trel-
lis, which shows the transition dynamics, is a two-dimensional
graph that is described in vertical direction by N'states s; and in
horizontal direction by time instances kT (T= 1). The states of
time instance, k, are connected with those of time k+ 1 by the
branches of time interval (k,k+ 1). Below we refer to a specific
state 5, at time instance k as node s; ;. The branch between two
nodes corresponds to a possible state transition. A simple ex-
ample of a trellis is given in Figure 2a for N=2 states. The nota-
tion used can be summarized as follows:

e N — number of states
e k — time instance
es; — i-th possible state, ie {1,...N}

* 5, — node: i-th possible state of time instance k

Now, the finite state machine chooses a path through the
trellis and with the help of the observed state transitions (overa
noisy channel) the branch metrics of time interval (k,k+ 1) are
computed.

Fig. 3. Block diagram of the Viterbi decoder.

The best path through the trellis is calculated recursively
by the VA, where best can mean, €.8., the most likely. This is
done recursively not by computing only one path for each
time k, but N paths, i.e., the optimum path to each of the N
nodes of time k. The N new optimum paths of time k+ 1 are
computed with the help of the old paths and the branch
metrics of time step (k,k+ 1). This should be explained for the
simple trellis shown in Figure 2a. As indicated in Figure 2b,
each of the optimum paths of time k, i.e., each nodes;,; ,hasa
path metric 7, . that is the accumulation of its branch metrics.
Now, the new optimum path leading to node sy 4, 18 the
metric leading to this node. Therefore, the new path metric
Y1,k41 Of node sy 4o is

Viser 1= maximum(Ayy g+ Yoo Mzt Y20

and equivalently for node s,z |

Yoy 1 = maximum(y g+ 71 o Aozt V2,0

These N=2 equations together form the Add-Compare-Select
(ACS)-recursion of the VA.

Since, with the help of the ACS-recursion, a set of Npathsis
decoded, the question that might arise now is, “How do we find
the best path, which must be unique?” However, if all N paths
are traced back in time, they merge into a unique path, and this
is exactly the best one which is to be found.

The number of time steps that have to be traced back for the
paths to have merged with high probability is called the survi-
vor depth, D. Therefore, in a practical implementation of the
VA, the latency of decoding is at least D time steps.

An implementation of the VA, referred to as Viterbi Decod-
er (VD), can be divided into three basic units, as shown in Fig-
ure 3. The input data (the noisy observations of the transitions
of the finite state machine) is used in the Branch Metric Unit
(BMU) to calculate the set of branch metrics 4;; for each new
time step. These are then fed to the Add-Compare-Select Unit
(ACSU) that accumulates the branch metrics recursively as
path metrics according to the ACS-recursion. The Survivor
Memory Unit (SMU) processes the decisions being made in
the ACSU due to carrying out of the ACS-recursion and out-
puts the estimated path, with a latency of at least D.

a. Example of a state diagram with N=2 states
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b. ACSU for the state diagram given

Fig. 4. ACSU for a state diagram with N=2 states.
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b. A 3-bit implementation of the ACS-loop.

Fig. 5. ACS-loop at the word- and bit-levels,

As can easily be seen, the design of the ACSU depends only
on the ACS-recursion, determined by the trellis. Also the path-
decoding in the SMU depends only on the trellis and therefore,
is independent of the application for which the VA is being
used. The application specific computations are the calcula-
tion of the branch metrics in the BMU and the interpretation
of the decoded path into raw data at the output of the SMU.
Since the application specific parts of the VD are mainly found
at the input and output, major architectural investigations can
be carried out which are generally applicable.

High-Speed Viterbi Decoders: State of the Art

By viewing the block diagram of a VD shown in Figure 3, it
can be seen that all three units need to operate at the data rate
1/T. In some cases this problem can be solved by L-fold inter-
leaving, allowing the use of L VDs at reduced speed, or by other
manipulations of the data-stream [14] [15]. However, if a high-
speed VD needs to be realized, the problem of implementing
all three units for high speed arises. Since the BMU, as well as

To date many different architectures
are already well known for the
realization of VDs. To achieve medium
throughput rates the path metric
update of the ACS-recursion is carried
out serially or in part serially.

the SMU, are purely feedforward (without feedback), the
throughput rate can easily be increased substantially by intro-
ducing massive pipelining and/or a parallel implementation.
However, this does not hold for the ACSU.

In the following we will use a simple example of an N=2
state diagram of the finite state machine that is to be decoded
by the VA. The state diagram is given in Figure 4a, showing
possible transitions from state s; t0 s,, s, t0s,, s, tos;, and s,
t0's, (the trellis is shown in Figure 2a). According to these four
branches, the BMU has to compute four branch metrics for
each time step. Recall, we refer to l,j’k as being the branch
metric of s; to s; and time step (k, k+ 1). These branch metrics
have to be accumulated to path metrics y; according to the
ACS-recursion.
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Fig. 6. Carry-ripple and carry-save additions.
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If this ACS-recursion is mapped onto hardware such that a
high-speed realization is achieved, by exploiting the inherent
parallelism, then each operation has to be implemented by a
separate processing element. This leads to the block diagram of
the ACSU as given in Figure 4b. By viewing this ACSU it can
be noticed that it strongly resembles the state diagram of Fig-
ure 4a. Two ACS-cells (shaded regions in Figure 4b) are con-
nected with each other exactly as determined by the state dia-
gram. This shows the strong interaction between the state
diagram and the architecture, because the algorithm is deter-
mined by the state diagram.

A high-speed implementation requires the examination of
the critical path. Since the ACSU is the implementation of a
recursion, it contains a feedback loop. This loop, referred to as
the ACS-loop, is indicated in Figure 4b. Because of the
nonlinear and data-dependent maximum selection, it is the
bottleneck of a VD for high-speed implementations [16]. It
therefore will be examined in detail in the Bit-, Word-. and
Algorithm-Level Parallelization sections following.

To date many different architectures are already well
known for the realization of VDs. To achieve medium
throughput rates the path metric update of the ACS-recursion
is carried out serially or in part serially. In many cases the fact
can be exploited that the trellis is a shuffle-exchange graph,
equivalent to the graph known, e.g., from the Fast Fourier
Transform (FFT) or from sorting [17]. Then so-called “butter-
fly” processor arrangements can be used, as known for FFT im-
plementations [18] [19].

To achieve high throughput rates at least the maximum in-
herent parallelism of the VA has to be exploited, i.e., one ACS-
cell needs to be implemented for each equation of the ACS-
recursion as mentioned above and shown in Figure 4b [16]
[20]. The complexity of the implementation thus depends at
least linearly on the number of states. The high integration den-

CSM |—J
Yk
CSM ]—]

Critical Path

Fig. 7. 4-bit ACS-loop with CS-arithmetic.



Table I. High-Speed Viterbi Decoders: State of the Art

Data Rate Clock Frequency

Technology

Reference/Year

15 Mbls  15MHz 8

17 Mbjs 17 MHz 64

20 Mb/s 20 MHz 64 ‘ ohi ;

25 Mbys 25 MHz o cuos Chip ; : !ise;s [31) 1991
115 Mbs 29 MHz 4 CMOS Chip Semi Custom [32] [26] 1989
2n-600 Mb/s 50 MHz 4 2n CMOS Chips Semi Custom [27] 1990/1991
120 Mbs 60 MHz 8 ECL 100K PoBs  [231986

140 Mbfs 70 Mz 16 ECL 100K - PoBs pé19%s

100 Mbls 100 MHz 4 Analog +ECL PCBS [25] 1989

sity of CMOS enables the design of VDs with an ACSU for up
to N=64 states on one chip to date. However, the maximum
achievable throughput rate depends on the technology used,
since the critical path is a nonlinear feedback loop. No addi-
tional parallelism can be introduced with standard means to
obtain very high-speed VDs with massive parallel processing.
Therefore, this is a bottleneck that leads to the fact that the fast-
est CMOS VD to date that realizes this architecture only runs
up to 25 Mb/s [21] [22]. to achieve higher throughput rates
large ECL, hybrid, and analog circuits were realized [23-25].
This very clearly shows the extremely large cost that has to be
invested to cope with the ACS-bottleneck by technological
means.

Today’s fastest VDs are given in Table I. We included two
designs, one that has been and one being fabricated by imple-
menting new parallel architectures that we derived for the VA
[26] [27]. As can be seen very clearly, these architectures allow
the implementation of VDs in CMOS for data rates that are
otherwise not achievable (27600 Mb/s), or achievable only
with very large ECL circuits (115 Mb/). This should show the
reason why it is very important to derive efficient parallel ar-
chitectures for VDs, as will be pointed out in the following dis-
cussion.

Bit-Level Parallelization

After outlining the three principal levels of introducing ad-
ditional parallelism into an algorithm, we want to indicate a so-
lution for the VA at the bit level. To do so, we need to examine
the critical path, i.e., the ACS-loop, in more detail. Since the
critical path is a feedback loop, it cannot be circumvented by
introducing pipelining.

The Bit Level Solution

The ACS-loop, as shown in Figure 5a, comprises an addi-
tion and a maximum selection. The conventional approach to
obtain a very short critical path is to use very fast adders and
maximum selectors (where the maximum selectors are usually
realized by a comparator followed by a multiplexer). This can
be achieved by using carry look-ahead adders and equivalent
look-ahead comparators. However, even though the latency of
the ACS-loop is shortened by this solution it still depends on
the word length. Thus, a high-speed realization requires a short
word length, whereas a good decoder performance (low decod-
ing error rate) requires a fine quantization of the branch
metrics and therefore a long word-length of the path metrics.!

'This is of importance especially if the VA is used for
equalization or the decoding of multilevel coded modulation.

In the following we want to point out a solution that not only
eliminates this trade-off but also leads to an extremely short
critical path.

For closer analysis of the critical path it is not sufficient to
examine the ACS-loop at the word level only, as given in Figure
5a, but is needs to be examined at the bit level. A bit-level sig-
nal flow diagram is given in Figure 5b for a W =3 bit realiza-
tion, where the W=3 bit adder is realized with W 1-bit full
adders, showing a carry ripple path from the Least Significant
Bit (LSB) to the Most Significant Bit (MSB). The W-bit maxi-
mum selection is also realized with bit-local processing ele-
ments that only communicate with the neighboring bit-levels.
As can easily be seen, a bit-local maximum selector that serially
processes bit level after bit level without feedback can only op-
erate when it starts at the MSB, gives out the MSB, and goes
down to the LSB. If it started at the LSB it could not give out

A high-speed realization requires a
short word length, whereas a good
decoder performance (low decoding
error rate) requires a fine quantization
of the branch metrics and therefore a
long word-length of the path metrics.

the correct LSB without knowing about the values of the higher
bit levels. The flag-ripple of the decision finding of the maxi-
mum selector thus goes from the MSB to the LSB. Therefore,
the critical path of the ACS-loop starts at the LSB of the adder
chain, runs along the carry-ripple to the MSB, down through

Table Il. 115 Mb/s Singie-Chip Vitérbi Decoder

Technology 2 uCMOS, 74mm?

Maximum Clock 29 MHz =» 115 Mb/s

Frequency

Complexity 8,800 gates (35K Transistors)
Testing Built-in Selftest (99% Fault Coverage)
Processing Power ‘Equivalent To 1 GOPS
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Fig. 8. Layout of fabricated 115 Mbk Viterbi decoder chip (N =4,
2uCMOS, 9K gates).

the flag-ripple of the maximum selector chain, and back to the
LSB. In this case, it is linearly dependent on the world length.

As mentioned above, since the critical path is a feedback
loop it cannot be circumvented by pipelining. Thus there is a
need for the elimination of the loop. This can only be obtained
by either eliminating the carry-ripple of the adder or the flag-
ripple of the maximum selector. Since the maximum selection
is a nonlinear operation, it certainly is very difficult, if not im-
possible, to find a solution without flag-ripple. However, the
addition is a linear operation.

Figure 6a shows part of a carry-ripple adder as used in Fig-
ure 5b that calculates the sum

S:is[2i

Now if the carry bit c,, is not fed to the i-th bit level, but is
saved as part of the result (Figure 6b), then the sum always has
2 bits of weight 2, namely s; and ¢,

S= D (s 4en2t= D>y 2!

l i

where v;=s5;+¢; can take on the values v,£{0, 1, 2}. Due to the
different adder architecture these s; and ¢; do not take on the
same value as those shown in Figure 6a. As now the carry bits
are saved and do not lead to the full adder of the next bit level,
this adder architecture is called Carry-Save (CS) addition [33]
[34]. The resulting sum will therefore be referred to as a CS-
number. The resulting CS-number representation is redun-
dant, since it is a binary number with ternary weights v;. There-
fore, more than one representation exists for one value, e.g.,

2=(02)=(10).
The big advantage of the CS-addition is that no carry-ripple

exists, which is exactly what we want. So, if a CS-Maximum
(CSM) selector can be built with a bit-local flag-ripple from
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MSB to LSB, this would be a solution for the ACS-loop. Even
though the CS-number representation is redundant and the
maximum selection is a nonlinear operation, a very simple
CSM was derived (30-40 gates) [35]. This allows the imple-
mentation of the ACS-loop with CS-arithmetic as given in Fig-
ure 7. As can be seen, the critical path still runs along the flag
ripple through all bit-levels, however, it is not a feedback loop.
Therefore, in contrast to any conventional architecture, pipe-
line stages can now be introduced according to the laws given
[6] [7]- This results in a critical path that is very short, it runs
only through two full adders plus two CSMs, and is indepen-
dent of the word length W. These two features allow the real-
ization of high-speed VDs with an achievable data rate that is
independent of the implemented word length [26].

Implementation Example

To apply the new carry-save architecture outlined above, we
chose to realize a VD for the rate 2/3, 4-state, 2 x 8 Phase Shift
Keying (PSK) trellis code given in [36]. The chosen code is es-
pecially well suited for digital satellite (and microwave) com-
munication due to its rotational phase invariance. Therefore
the aim was to build a VD for this code which, by implement-
ing the novel architecture, is applicable for the 100-150 Mb/s
digital satellite channels.
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Fig. 10. Layout of a cascadable VD-module for N =4 states, 50
Mbs; 2uCMOS, and 120K transistors (25K logic, 13 RAMs).

Some key facts about the fabricated chip are summarized in
Table II.

As can be seen in Figure 8, the carry-save architecture al-
lows a very efficient realization (only 8,800 gates) of a VD that
conventionally required the implementation of very large
ECL-systems [23-25].

It can be shown that it is very easy to implement a self-test
for VDs. The fabricated chip, shown in Figure 9, therefore, has
an on-chip self-test (1% additional area) with static go/no-go
signal.

Word-Level Parallelization

The bit-level parallelization of the VA presents a solution to
design efficient high-speed VDs. However, since the critical
path still cannot be made arbitrarily short, the throughput rate
depends on the clock rate of the realization, and that is limited.
To achieve even higher rates of decoding, block processing
schemes need to be found that theoretically allow ultimate
speedups. To do so the ACS-recursion has to be examined clos-
er, which is the bottleneck of the VD.

Algebraic Formulation of the VA

On closer examination of the ACS-recursion it can be found
that only two algebraic operations are present, addition (add)
and maximum selection (max). If these two operations are
viewed more closely, it can be seen that the distributive law
holds such that

max(a+c,b+c)=max(a,b)+c (2)
Hence algebraically, add corresponds to the multiplication

and max to the addition, i.e., by using the symbols &) for add
and D for max we can rewrite Equation 2 as

aQ@chDb®c=(a®Db)®c 3
Based on the fact that the distributive law (see Equation 3)

holds and that @ forms a commutative group, and € a com-
mutative semi-group, these two operations form an algebraic

structure called a semi-ring [35] [37-39]. Using these symbols
we can write the ACS-recursion of Equation 1 as

7 }‘11,k®71.k®)‘ ®72,k

Lk+1 12,k

(4)
Y :A21'k®71,k6}3 )‘ZZ,k®'Y

2k+ 1 2,k

Thus Equation 4 looks just like a conventional linear alge-
braic recursion. Two major facts now allow one to rewrite
Equation 4 as a vector-matrix recursion, as known from linear
algebra [35] [39). First, @ and & form a semi-ring over all
N x N matrices. Second, equations formed with semi-ring op-
erations are linear. Hence, Equation 4 can be rewritten as

r 1:Ak®l‘k (5)

k+

where I, is the vector of all N path metrics of time k

L=, ne"

and the transition matrix A, comprises all Nx N branch
metrics A ; of time step (k, k+ 1). The operations of vector-
matrix multiplication are defined in an analogy to the well-
known definitions of linear algebra, requiring the definition of
two operations, namely & and @ . Rewriting the ACS-

recursion Equation 4 in the form of Equation 5 leads to

71> (')‘11 Mo 71)
= 3 =
(72 PUREERE S )‘22)k ('Yz k

(A“ ®71 @ Al2®72 )
b 8T, @ A22®72 k

6)

Next to the simplified notation the real advantage of the
semi-ring notation is that it shows that the ACS-recursion is
linear. Therefore the ACSU of a VD is a linear system (i.e., the
semi-ring notation linear superposition holds). This allows one
to handle Equation 5 as a linear equation. Writing Equation §
for time instant k+ 2 and inserting Equation 5 into it leads to

Dovo = 8 OT

(A

k+1 = Al:+l® (Ak®rk) -
g
L ®A)®T,

k

This is the breakthrough, since it can now be seen that I’ _ ,
can be calculated with the help of I';, without knowing the
value of I'; ;. Thus, now two time steps are available to carry
out the recursion Equation 7 instead of only one time step as

Uniquely Decoded Path N Decoded Paths

Acquisition Depth l Of The Survivor Depth
D E-D-D
r Y ~

—t/T

Fig. 11. Scheme of decoded paths after processing E steps.
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Fig. 12. Layout of a Viterbi decoder module for a ring architecture
Jor acquisition method (5 chips: 120 Mbk. 2uCMOS, 9K gates).

holds for Equation 5. Or, in general, by further transformation
of the ACS-recursion the following M-step ACS-recursion re-
sults [35]

Do =y @1y (8)
with the M-step transition matrix ,,A, defined as

A=A

M S BN BN, 9)

R+ -1

Therefore the ACS-recursion is not a bottleneck. With the
help of semi-ring algebra it can be transformed to an M-step
ACS—recursion Equation 8 with so-called look-ahead computa-
tion Equation 9 that can take place outside of the recursion, in
an analogy to the results known for conventional linear sys-
tems [40-43]. The possibility of an M-step word-level
parallelization was first found by analysis of the trellis itself in-
dependently by the author [44] [45], and Thapar [46] [47]. The
possibility of an algebraic parallelization was independently
pointed out [35] [37] [48].

Implementation Architectures

To get an idea of how an M-fold speedup can be achieved by
implementing the M-step ACS-recursion (see Equation 8), ar-
chitectural examples shall be discussed. Notice that the M-step
recursion transformation is well known to linear algebraic
recursions. Since the ACS-recursion is a linear recursion, all
known M-step architectures for linear systems of t¥pe Equa-
tion 5 can be applied for the M-step VA [38] [39].

Generally, two principle methods exist to implement
M-step recursions, i.e., block processing or pipeline interleav-
ing. In the case of block processing the major idea is that the in-
coming data stream is serial-to-parallel converted in blocks of
length M, and the following circuit processes each complete
block of data in parallel (see Figure 1). Thus, only the serial/
parallel converter needs to operate at the high-speed 1/T
whereas the actual computation is being carried out with a

2E.g., digital filters, state-space systems, and carry look-ahead
adders.
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clock rate M times slower. In case of pipeline interleaving the
processing circuit has to be clocked with the same high speed as
the data rate 1/T and therefore, is limited by the maximum
clock rate of the technology chosen. Hence, we will focus on the
discussion of two simple block architectures for the ACSU.

As can be seen by viewing Equation 8, next to carrying out
the M-step ACS-recursion, the M-step transition matrix needs
to be computed for each time step. This corresponds to an
M-fold multiplication of transition matrices that can either be
done in a tree-like or pipeline structure (see Figure 9). Also
shown in Figure 9 is the serial/parallel converter followed by A/
parallel BMUs to compute the M transition matrices of each
block of data in parallel. These are then multiplied either in a
tree (see Figure 9a) or pipeline (see Figure 9b) of matrix multi-
pliers whose output is fed to the M-step ACSU that carries out
the M-step ACS-recursion. More detailed architecture descrip-
tions can be found in [9] [35].

We only want to point out here the major difference be-
tween the two architecture principles that lie in latency, regu-
larity, and complexity. As can easily be seen, the tree architec-
ture, is not as regular as the pipeline, but has a short latency of
O(logM), whereas the pipeline leads to a latency of O(M). How-
ever, efficient multipliers can be derived for the pipeline and
therefore, the complexity of one matrix multiplication is only
of O(N?) compared to O(N3) for the tree [35]. Thus a trade-off
exists between complexity and latency.

Implementation Example

To show the realizability of the VA with M-step ACS-
recursion, referred to as the M-step VA, we want to present an
implementation example we carried out for a 4-state
convolutional code. As an architecture we chose the pipeline
multiplication. The architecture can be arranged, such that it
can be divided up into identical slices which can then be
chained to achieve the desired M [35]. We implemented M =4

Fig. 13. Layout of the 600 Mbs minimized method Viterbi decoder
chip, 1.2uCMOS, 75K gates, buffer RAMs (in fabrication).



Table 11l. 600 Mb/s Viterbi Decoder Chip

Technology 1.2 4CMOS, 170mm?

Typical Clock 50 MHz =» 600 Mb/s

Frequency

Complexity 75,000 gates (300K Transistors)
Testing Built-in Selftest (99% Fault Coverage)
Processing Power Equivalent to 12 GOPS

on one chip which, by the chaining of four chips, allows the re-
alization of a 16-step VD. The complete design of the chip was
carried out with 2 CMOS standard cells and Random Access
Memories (RAMs) for the buffering, which totaled 120 mm?
chip area (see Figure 10). With a clock frequency of 50 MHz
(simulation) each chip achieves a rate of decoding of 50 MHz.
Thus a 1 Gbss (1 GHz) decoding rate could be achieved by cas-
cading 20 chips. Assuming 1y technology, dynamic latches,
and a full custom design of the CSM (which was used here to
achieve high efficiency), this 1 Gb/s VD could be implemented
on a single 200 mm?2 chip, which certainly shows that this con-
cept is realizable today (for a small number of states).

Algorithm-Level Parallelization

Here we want to show how, by exploiting knowledge of as-
ymptotic algorithmic behavior, the VA can be paralleled at the
algorithm-level.

Asymptotic Algorithmic Properties

If a VD starts decoding in the midstream of the data, i.e.,
somewhere in the middle of the trellis, a period of initial syn-
chronization occurs until it decodes exactly as if it had been
working from the beginning [49]. The important fact that has
to be noticed is that the period of initial synchronization is lim-
ited, i.e., after processing D steps of the trellis, acquisition has
occurred with high probability. It can be shown that the period
of D steps that has to be processed for acquisition (with high
probability) is exactly as long as the survivor depth, D [50]. As
mentioned above, if all N paths that are decoded by carrying
out the ACS-recursion are traced back in time, they merge at
time k— D. Therefore we can summarize the algorithm-level
information in a scheme of decoded paths of the VA as shown
in Figure 11. When a block of E steps has been processed (e.g.,
interval (k—E, E)), the first D steps have to be discarded as
being too unreliable due to initial synchronization. In the sec-
tion of the last D steps the uniquely decoded path branches out
to N paths, one leading to each state. Solely by exploiting this
algorithmic knowledge new parallel VD architectures were de-
rived [44] [50] [51].

We do not want to go into the details of the parallel VD solu-
tions cited above, but want to give a feeling of why the informa-
tion about the decoded paths of a processed block of the trellis
shown in Figure 11 can be exploited. Assume that a VD would
only process a block of finite length of E steps of the trellis.
Then, as can be seen in Figure 11, a section of E—2D steps of
the path has been decoded. Thus, any block of the trellis can be
decoded by processing an additional D preceding and D follow-
ing steps. Hence, on this block level no feedback exists that can
therefore be exploited to derive parallel VD architectures that
we refer to as acquisition methods [44] [50] [51].

An especially efficient method of parallel Viterbi decoding
that can be mapped onto very efficient architectures can be de-
rived, if the algorithm-level knowledge is combined with the al-
gebraic word-level transformation shown above. This is done
by examining the M-step VA for M>D. By exploiting the
knowledge of the limited survivor depth it can be shown that

In case of pipeline interleaving the
processing circuit has to be clocked
with the same high speed as the data
rate 1/T and therefore, is limited by
the maximum clock rate of the
technology chosen.

the M-step transition matrix \¢A, than is linearly dependent,
i.e., of rank one. (Hence computing one column and one row
uniquely determines yA,). This allows a modification of the
ACS-recursion to a purely feedforward expression, the basis of
deriving the very efficient minimized method [27] [50] [52].

Implementation Examples

To prove the feasibility of the acquisition methods we de-
signed a VD-chip whose layout is given in Figure 12. This VD
is a module of a ring architecture. It can be configured to a ring
of modules where the total decoding rate is linearly dependent
on the number of modules in the ring. The design was carried
out such that a ring configuration of 5 chips achieves a decod-
ing rate of 120 Mby/s for decoding 6-state 8 PSK trellis coded
modulation [53]. Each chip is a 2u CMOS standard cell ASIC
with 5 RAMs for the buffering and the SMU implementation.
The relatively low clock rate of 15 MHz is due to the fact that
the efficient high-speed carry-save ACSU was not yet derived
at the point of this design. Hence, by designing the 100 Mb/s
VD presented above as one VD-module, much higher decod-
ing rates would be achievable.

The extremely high efficiency of the minimized method
mentioned above is demonstrated by the layout of the VD chip
in Figure 13. This VD was designed for the same 4-state linear

Table IV. Parallel Viterbi Decoder Architectures

Parallelization Level Latency Complexity
Bt Level . Cany-Save ; Sutmbdahd i e
Word-Level (M-Step VA) Pipeline Architectures 2D N2
Tree Architectures 2logD N3
Algorithm-Level Acqms:theihads 4D e I N
All Three Levels Minimized Method 3D N

*All architectures with equivalent trace-back SMU.
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convolutional code (constraint length K=3) that underlines
the chip design shown above (see Figure 9). The chip is de-
signed with 1.2u standard cells and 3 RAMs for buffering and
consumes 170 mm? chip area. Taking into account a minimum
clock frequency of 50 MHz and the fact that a block of D=12
steps is decoded per chip in parallel, results in a decoding rate
per chip of at least 600 Mb/. This is already more than 20
times the rate of the fastest commercial VD chip available to
date [22] (see Table I). Some key facts of the chip which is cur-
rently being sent to fabrication are given in Table III.

The minimum system configuration, which needs 2 chips,
achieves 1.2 Gb/s, and multiples hereof are obtained by using
more chips in parallel.

Conclusions

For very high throughput rates not only the inherent paral-
lelism of an algorithm needs to be extracted, but additional
parallelism has to be introduced. For this sake three levels
exist, namely the bit-, word-, and algorithm-level.

Even though the ACS-recursion presents a bottleneck for
high-speed implementations of the Viterbi algorithm, addi-
tional parallelism can be introduced at all three levels. At the
bit-level the derivation of nonlinear carry-save arithmetic al-
lows pipelining the ACS-recursion between the bit-levels, such
that the critical path is extremely short and independent of the
word-length. At the word-level the two operations of the ACS-
recursion were identified to form an algebraic structure that al-
lowed an algebraic transformation such that the bottleneck was
eliminated. Finally, at the algorithm-level asymptotic behavior
was exploited to derive parallel processing architectures. Fur-
thermore, it was pointed out that by combining the word- and
algorithm-level, a very efficient minimized method can be de-
rived which, when the bit-level carry-save optimizations are
used, allows the realization of Viterbi decoders up to the Gb/s
range on one chip in present-day technologies.

The different solutions span a wide space, as is summarized
in Table IV. To achieve an extremely small latency one has to
pay by increased complexity of O(N?) (tree architecture)
whereas the combination of all three levels (minimized meth-
od) is a good compromise between latency and complexity.

The Viterbi algorithm is only one specific example of a large
set of algorithms which is of interest to design parallel process-
ing architectures. Therefore, it is important to derive metho-
dologies and tools of how to introduce additional parallelism
into algorithms. The basic tools applied here were CS-
arithmetic at the bit-level, semi-ring algebra at the word-level,
and exploiting acquisition properties at the algorithm-level.
We believe that the generalizations of all three methods of
finding solutions at each level are a step in this direction [9].
However, a lot of work remains to be done.
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