A Parallel Viterbi Decoder Implementation for High
Throughput

Muhammad Shoaib Bin Altaf
shoaibbinalt@wisc.edu

ABSTRACT

Today’s data reconstruction in digital communication systems
requires designs of highest throughput rate. The Viterbi Algorithm
is a key element in such digital signal processing applications.
The non-linear and recursive nature of the Viterbi decoder makes
its high-speed implementation challenging. Several promising
approaches to achieve high throughput have been proposed in the
past. In this project one such technique, look-ahead, is studied for
extracting vectorized output bits without taking into consideration
the hardware cost involved. It came out that even with small steps
of looking ahead the processing gains are very high.

1. INTRODUCTION

Convolutional coding and Viterbi decoding are widely used in
modern digital communication systems, such as communication,
satellite communication, and mobile communication, to achieve
low-error rate data transmission. The Viterbi algorithm [10] is
known to be an efficient method for the realization of maximum
likelihood (ML) decoding of convolutional codes. It is based on
the study of a weighted graph that is used for attempting the
reconstruction of the input sequence to the convolutinal encoder
based on the coded sequence received from a noisy channel.

With the development of digital communications, high speed
large Viterbi decoder are required to yield higher coding gain and
provide large ability to transmit more data in the same channel.
Latest wireless communication technologies like WiMAX is
opening up new challenges in baseband hardware design and
demanding high speed, area efficient and reconfigurable designs.
As the data speeds are moving skywards, demand for high speed
Viterbi decoders is increasing. The proposed design particularly
will strive for a design optimized for high speed such that the at
each clock cycle the decoder will be decoding a couple of bits
instead of a single bit without compromising on performance so
that it suits the requirements of latest wireless standards like
802.16e.

The add-compare select unit recursion in the Viterbi decoding
algorithm contains feedback loops the speed of Viterbi decoding
is limited by this iteration bound. In this project, I have
implemented a look-ahead technique for combining several trellis
steps into one trellis step in time sequence, for breaking the
iteration bound of the Viterbi decoding algorithm. Results show
that the proposed design gave a considerable gain in processing
time. The next section contains the previous work done. Section 3
describes the actual Algorithm followed by section 4 containing
information about the optimizations techniques. Section 5
describes the implementations followed by results in section 6 and
conclusions in section 7.

2. RELATED WORK

Researchers have been working in the area of optimizing the
Viterbi decoder for couple of years. Some tried to increase the
throughput & reduce the area consumed by giving the idea of
radix-4 approach instead of radix-2 [17]. The idea of systolic
array processing is also not new in this regard for increasing the
throughput [15]. Nandu et al. employed normalization & systolic
array processing in their design [7]. Batcha et al. achieved high
throughputs compatible with Wimax using pipelining [6].
Fettweis [1] also used pipelining for increasing the throughput of
their design. The idea of using look-ahead for speeding up
sequential architectures is also not new, Parhi investigated look-
ahead for Huffman decoding in the early 90’s [5].

3. VITERBI ALGORITHM

We can view the Viterbi algorithm as a dynamic programming
algorithm for finding the shortest path through a trellis, and the
algorithm can be broken down into the following three steps.

e Weigh the trellis; that is, calculate the branch metrics.

e Recursively compute the shortest paths to time 7, in terms of
the shortest paths to time n-1/. In this step, decisions are used
to recursively update the survivor path of the signal. This is
known as add-compare-select (ACS) recursion.

e Recursively find the shortest path leading to each trellis state
using the decisions from Step 2. The shortest path is called
the survivor path for that state and the process is referred to
as survivor path decode. Finally, if all survivor paths are
traced back in time, they merge into a unique path, which is
the most likely signal path that we are trying to find.

1} 1 2

® O 9

® o o
e .0 0 0 0 &
L O s O
o 0 9o 9 © @

Figure 1- Actual Flow of Viterbi Algorithm

6é00.

Associated with each trellis state S at time n is a state metric
which is the accumulated metric along the shortest path leading to
that state. The state metrics at time n can be recursively calculated
in terms of the state metrics of the previous iteration as follows:
PM;,; =min (PM; +BM;;,;, PM;+BM;;,1); @

PMj+1 =min (PMl +BMi,j+1, PMJ+BM“+1); (2)

where i+ is a predecessor state of i and BM;;,; is the branch
metric on the transition from state i to state j. The qualitative
interpretation of this expression is as follows. By definition, the
shortest path into state j must pass through a predecessor state. If

the shortest path into j passes through i, then the state metric for
the path must be given by the state metric for i plus the branch
metric for the state transition from i to j. The final state metric for
j is given by the minimum of all possible paths. The recursive
update described by (1) and (2) are the ACS operation and are
implemented as shown in Fig. 1 for the four-state trellis example.

n-1 }\'OU‘H 1
Ye,r- b Yo.n
YZ,F 1 }"ZU‘H 1
10
Moo et
(a) (b)

Figure 2 (a) Predecessor states of state 00 (b) State metric
update for state 00, implemented using 2-way ACS

The update unit is referred to as a two-way ACS unit, because
there are two input branches for each state, In general, a state with
m-input branches requires an m-way ACS unit[2, 7]. As well as
calculating the updated state metric, the ACS unit outputs a
decision d;,, which identifies the entering path of the minimum
metric.

In order that the input sequence can be decoded, the survivor
path (shortest path) or signal through the trellis must be traced and
decoded. The two classical algorithms for survivor path storage
and decoding are the register-exchange method and the trace-back
method. Both algorithms require a recursive update which
fundamentally limits the throughput. Register-exchange is suitable
for low-complexity trellises and is high in throughput. Trace-back
is preferable for higher complexity trellises due to reduced area
and power dissipation, In the Viterbi decoder, the register-
exchange method is used to finish the survivor path storage and
decoding.

Since traceback approach lags behind Register exchange in
throughput, it’s more logical to apply throughput increasing
techniques on the traceback approach rather than register
exchange. With this methodology, I will be getting the reduced
area but also higher throughput.

4. OPTIMIZATIONS

A high speed implementation of the VA can only be achieved by
increasing the speed of computation of all its three units. Since the
ACS unit is much more complex, it is bottleneck which limits the
throughput rate but as every cloud has a silver lining, the “Good”
thing is that VA is recursive in nature. I have number of loops in
the algorithm. So more or less all of the optimization techniques
we studies in the course can be successfully employed on VA to
have a better performance. Some of the possible candidates can be

Look Ahead Transformation
Loop unrolling

Retiming

Systolic Array implementation
e Pipelining

As mentioned in Section 2, lot of work has been done using above
techniques mentioned above by exploiting the recursive nature of
the Viterbi Algorithm.

Since the main purpose of this project is to come up with such a
technique which gives a vectorized output, the only viable option

is “Look-Ahead Transformation”. Other techniques do help in
increasing throughput or in general performance but they don’t
serve the very purpose of giving notion parallel decoding of
number of bits. So for the rest of section, I will discuss the
implementation optimization using Look-Ahead technique only.

4.1Look-Ahead Transformation

The difficulty of pipelining the feedback algorithm was removed
by the use of look-ahead computation. Look-ahead can be used in
the form of pipelining [2], parallel processing [3], or both. In
order to understand the process of look-ahead, consider the flow
in the normal executaion in Figure 1. At each time interval,
branch metrics will be computed and the best path metric will be
decided on the basis of minimla vlue of the two possible path.
This process will continue till the trellis is completetly fileld. The
number of hops taken will be equal to the number of time stamps.
Figur 2 depicts this that for filling a trellis to ‘6’ time units, 6
compariosn needed to be done in ‘6’ hops.

Now consider Figure 3, the actual flow is modified in such a way
that instead of going to timel it goes directly to time2, this will
save the time spend at each node. In the new scenerio the

1 r F d S LE

e
B
S

Figure 3- Look-Ahead Transformation M=1

L |

YXXE
éo o0

compariosn will be done skipping each intermediate node. It is
also clear that earlier there were only two paths to reach a node
but with this modification the new path can enter a node from any
of the four nodes. This will incrase the size of my comparator at
each node, instead of selecting the best (minimum) between two,
now it has to slect the minimum among the four.

Similarly, taking the look-ahead step M=2, I will skip 2
intermediate nodes and ecah time jump to every 3™ node after
adding the respective branch metrics with the state metric. This
idea can be extended to skip all the intermediate stages & go
directly to the final node. But it depends on our application what
we are looking for.

1 2 3 4 5 G

90O
o
©

Figure 4- Look-Ahead Transformation M=2

The expressions in (1) and (2) now become

PM;,; =min(PM;+BM;;;,1,PMj+BM; ;.1 ,PM+BMj .,
PM+BM,;,1); 3)

PM;,; =min(PM;+BM, ;,,PM;+BM; ;. ,PM+BMy .1,
PM+BM,,1); (€)]

PMy,; =min(PM;+BM; j, 1, PM+BM; ., 1 ,PM+BM 11,
PM+BM, y.1);)

PM,,; =min(PM;+BM; 1,1,PM;+BM; 1. ,PM+BMy .1,
PM+BM, 1,1); (6)

These effects are also visble in Figurel-3.

After completion of filling the trellis the next step is decoding the
bits from the information gethered. Genrally we start from the end
and move each time interval back to get to the adjacent previous
best state. Thus if there are ‘6’ bits in my block I have to go back
6 hops decoding a single bit during each backward hop. Also I
know that the present state can be achieved form two possibel
states the decoding table will be simple as well.

But with the new implementation, say M=1 I will skip ‘5" will
directly go to ‘4’ and judge from the metrcs computed that which
among the four is the best previous state. Thus increasing the
complexity of the decoding table. Its also evident that with this
approach instead of ‘6’ hops I will get at all the bits decoded with
only ‘3’ hops, each hop givinig me ‘2’ bits. Similarly, for M=2,
the hop count will further decrease to only 2 with three bits
decoded at each hop. The step size can thus be varied to any value
to even get all the bits on a single hop.

S. IMPLEMENTATION

In order to establish the authenticity of the proposed optimization
in the Algorithm, I have done some simulations. Matlab is used as
the simulation environment. Results are collected for three
versions of the simulation, namely

e The uncoded version
e Viterbi Decoding without look-ahead
e Viterbi Decoding with Look-ahead

The parameters chosen for the simulation are listed in Table 2. For
simplicity the results are shown for K=3, r=1/2, M=1. The logic
behind is that if it’s true for the simple case than depending on our
requirement we can extend the parameters to suit our needs.
Another important parameter is the soft-decision decoding,
although it is also an optimization (over the hard-decision) but its
effect are not discussed as it has nothing to do with the
throughput. I am also using block processing of data instead of
sample by sample processing. With block processing I have all the
bits that need to be processed, so their branch metrics can be
computed in the initial stage without waiting for them. This gives
a lot of freedom for the look-ahead transformation.

I am not only recording the efficiency in time but also the
performance of the proposed design. The reason being this may be
possible that it may be running faster but running poor in the
performance. In that case the speed will be useless, as it will be
failing to fulfill its foremost purpose of Forward Error Correction.
For this a BER comparison is done between the original version
of VA and the optimized one.

for i = l:length(recieved_input) /2

path_matl = path_mt_array(l,1) + br_mat(l,1);
path_mat2 = path_mt_array(2,1) + br_mat(4,1);
[best_mat(1l,1) state]l= min([path_matl,path_mat2]);
surv_st(1l,1) = state;

end

Figure 5- Part of code w/o Look-Ahead

Figure 4 and Figure 5 shows a portion of the actual codes. One
can also judge form these snippets that the loop is running for half
the time in case of look-ahead. And in case of look-ahead a
comparison is done between four possible options instead of only
two.

for i = l:length(recieved_input) /4
path_matl = path_mt_array(l,1) + br_mat(l,2*i-
1)+br_mat(1,2*1);

path_mat2 = path_mt_array(2,1) + br_mat(4,2*i-
1)+br_mat (1,2*1);

path_mat3 = path_mt_array(3,1) + br_mat(3,2*i-
1)+br_mat (4,2*1);

path_mat4 = path_mt_array(4,1) + br_mat(2,2*i-
1)+br_mat (4,2*1);

[best_mat (1,1) state] =

min([path_matl, path_mat2,path_mat3,path_mat4]);
surv_st(l,1) = state;

end

Figure 6- Part of code with Look-Ahead

Parameter Value
Constraint Length K=3
Data Length 1075 samples
Generator (7,5)
polynomial
Rate r=1/2
Look-Ahead step M=1
Modulation BPSK

Block Processing

Soft-decision

Trace-back decdoing

Table 1- Simulation Parameters

It is also worth mentioning that both the versions of the VA are
using block processing for a fair comparison.

6. RESULTS

Results are presented in this section. The results look very
encouraging. The reported speed up Table 1, with only one look-
ahead step (M=1) is roughly 50% reduction in execution time.

Sequential VA Optimized VA

Execution Time in 38.3294 20.0305

seconds

Table 2- Simulation Results

The BER performance curve of the different simultaion sare
shown in Figure. The curve clearly shows that the opimized
design provides the speed up without any performance loss. The
optimizaed BER performance is the same as that of the
unoptimized one.

BER comparision for different Viterbi decoding imlementations for BPSK in AWGN

-| —9— theory - uncoded i
simulation - Viterbi sequential
simulation - Viterbi parallel

10®
i)
T
o [CZIZLZIZIIZCZIRICZZICIICS
g
< 10
o

10’

L e e R
10° | | | |
1 2 3 4 5 6 7 8 9 10
Eb/No, dB

Figure 7- BER comparison of Actual and Proposed design

7. CONCLUSIONS

In this project look-ahead technique has been exploited to create
the desired level of concurrency in the sequential design of Viterbi
Algorithm. It’s clear from the results that Viterbi decoding can be
optimized using the Look-Ahead transformation technique to give
a vectorized output. The choice of look-ahead step is application
dependent. It’s quite interesting that the decrease in execution
time is extremely high with only a single look-ahead step. This
may lead the designers to opt for this approach despite the
expected large hardware requirements.

Although this algorithm can be implemented in a few lines of
code, its storage space increases exponentially with each
additional level of look-ahead. Also the computational
complexity increases exponentially to compute the next set of
matrices. For un-optimized VA the look-up table for decoding
only require one bit of storage while in the case of look-ahead
implementation the size of look up table increases exponentially
with the increase of look-ahead step. Therefore, for large levels of
look-ahead this algorithm would be hard to use. At the same time,
the physical hardware needed to implement many levels of look-
ahead would become a limiting time and space constraint.

8. FUTURE WORK

In this project I have considered a vectorized high throughput
implementation of Viterbi decoder in Matlab, the next logical step
would be to go for a hardware implementation of the proposed
algorithm. This will be more challenging as while designing the
optimized VA no consideration has been put on the hardware cost.

The design considered in this project supports the binary
convolutional codes only. It will be interesting to investigate the
design for non binary case.

From the implementation point of view, the proposed design also
faces the problem that it leads to high latency for look-ahead ACS
precomputations. Parhi et al have looked into this matter but still
more work needed to be done in this regard.

9. REFERENCES

[1] G.Fettweis and H. Meyr, “Parallel Viterbi decoding by
breaking the compare-select feedback bottleneck” in Proc.
IEEE Int. Conf. Communications, pp.719-723, June 1988.

[2] H. Thappar and J. Cioffi, “A block processing method for
designing high-speed Viterbi decoders” in Proc. IEEE Int.
Conf. Communications, pp. 836-840, 1989

[3] K.K. Parhi, “Look-Ahead in Dynamic Programming and
Quantizer Loops” in IEEE Int. Conf. Circuits and Systems,
1989

[4] J.J.Kong and K.K.Parhi, “K-nested layered look-ahead
method and architectures for high throughput Viterbi
decoder,” in Proc. 2003 IEEE Workshop on Signal
Processing Systems, pp. 99-104

[5S] K.K. Parhi, “High-Speed VLSI Architectures for Huffman
and Viterbi Decoders”, IEEE 1992

[6] M.F.Batcha and A.Z.Sha’ameri, “Configurable Adaptive
Viterbi Decoder for GPRS, EDGE and Wimax” IEEE Conf.,
May2007K.K. Parhi, “High-Speed VLSI Architectures for
Huffman and Viterbi Decoders”, IEEE 1992

[7] S.Nandula,Y.S Rao, and S.P. Embanath, “High speed area
efficient configurable Viterbi decoder for WiFi and WiMax
systems, ” June 2007

[8] G. Fettweis, L.Thiele, G.Meyr "Algorithm transformations
for unlimited parallelism" IEEE Transactions on Very Large
Scale Integration (VLSI) Systems (VLSI) SYSTEMS) 15
(2007).

[9] J.G.Back, S.H. Yoon, and J.W. Chong "Memory Efficient
Pipelined Viterbi Decoder with Look-Ahead Traceback."
IEEE (2001).

[10] G.D.Forney, Jr., "The Viterbi Algorithm," IEEE Proceedings,
Vol.61, pp. 268-279, March 1973

[11] G.Fettweis and H. Meyr, "High-Speed Parallel Viterbi
Decoding: Algorithm and VLSI-Architecture " IEEE
Communication Magazine, May 1991

[12] H.D.Lin and D.G.Messerschmit, "Algorithms and
architectures for concurrent Viterbi decoding," in Conf. Rec.
1989 IEEE Int. Conf. Communications, vol.2, pp. 836-840

[13] J.J.Kong and K.K.Parhi, “Low-Latency Architectures for
High-Throughput Rate Viterbi Decoders,” in Proc. 2004
IEEE Transactions on VLSI Systems, pp. 99-104

[14] D.G.Messerschmit and H.D.Lin" Arbitrarily High Speed
Viterbi Decoders," UC Berkley, 1988

[15] C.Y.Chang and K.Yao. "Viterbi decoding by systolic arrays,
" in Proc. Ann. Allerton Conf. Communications, Controls,
and Computing, pp. 430-439, Oct 1985

[16] S.H. Choi and J.J.Kong, "State Parallel Viterbi Decoder Soft
IP and Its Applications" IEEE 2001.

[17] S.C.Kim, J.H.Ryu, and J.D Cho, “Low Power , High Rate Trellis”
Viterbi decoder employing the SST Scheme and Radix-4

