
A Parallel Viterbi Decoder Implementation for High
Throughput

Muhammad Shoaib Bin Altaf

shoaibbinalt@wisc.edu

ABSTRACT
Today’s data reconstruction in digital communication systems

requires designs of highest throughput rate. The Viterbi Algorithm

is a key element in such digital signal processing applications.

The non-linear and recursive nature of the Viterbi decoder makes

its high-speed implementation challenging. Several promising

approaches to achieve high throughput have been proposed in the

past. In this project one such technique, look-ahead, is studied for

extracting vectorized output bits without taking into consideration

the hardware cost involved. It came out that even with small steps

of looking ahead the processing gains are very high.

1. INTRODUCTION
Convolutional coding and Viterbi decoding are widely used in

modern digital communication systems, such as communication,

satellite communication, and mobile communication, to achieve

low-error rate data transmission. The Viterbi algorithm [10] is

known to be an efficient method for the realization of maximum

likelihood (ML) decoding of convolutional codes. It is based on

the study of a weighted graph that is used for attempting the

reconstruction of the input sequence to the convolutinal encoder

based on the coded sequence received from a noisy channel.

With the development of digital communications, high speed

large Viterbi decoder are required to yield higher coding gain and

provide large ability to transmit more data in the same channel.

Latest wireless communication technologies like WiMAX is

opening up new challenges in baseband hardware design and

demanding high speed, area efficient and reconfigurable designs.

As the data speeds are moving skywards, demand for high speed

Viterbi decoders is increasing. The proposed design particularly

will strive for a design optimized for high speed such that the at

each clock cycle the decoder will be decoding a couple of bits

instead of a single bit without compromising on performance so

that it suits the requirements of latest wireless standards like

802.16e.

The add-compare select unit recursion in the Viterbi decoding

algorithm contains feedback loops the speed of Viterbi decoding

is limited by this iteration bound. In this project, I have

implemented a look-ahead technique for combining several trellis

steps into one trellis step in time sequence, for breaking the

iteration bound of the Viterbi decoding algorithm. Results show

that the proposed design gave a considerable gain in processing

time. The next section contains the previous work done. Section 3

describes the actual Algorithm followed by section 4 containing

information about the optimizations techniques. Section 5

describes the implementations followed by results in section 6 and

conclusions in section 7.

2. RELATED WORK
Researchers have been working in the area of optimizing the

Viterbi decoder for couple of years. Some tried to increase the

throughput & reduce the area consumed by giving the idea of

radix-4 approach instead of radix-2 [17]. The idea of systolic

array processing is also not new in this regard for increasing the

throughput [15]. Nandu et al. employed normalization & systolic

array processing in their design [7]. Batcha et al. achieved high

throughputs compatible with Wimax using pipelining [6].

Fettweis [1] also used pipelining for increasing the throughput of

their design. The idea of using look-ahead for speeding up

sequential architectures is also not new, Parhi investigated look-

ahead for Huffman decoding in the early 90’s [5].

3. VITERBI ALGORITHM
We can view the Viterbi algorithm as a dynamic programming

algorithm for finding the shortest path through a trellis, and the

algorithm can be broken down into the following three steps.

• Weigh the trellis; that is, calculate the branch metrics.

• Recursively compute the shortest paths to time n, in terms of

the shortest paths to time n-1. In this step, decisions are used

to recursively update the survivor path of the signal. This is

known as add-compare-select (ACS) recursion.

• Recursively find the shortest path leading to each trellis state

using the decisions from Step 2. The shortest path is called

the survivor path for that state and the process is referred to

as survivor path decode. Finally, if all survivor paths are

traced back in time, they merge into a unique path, which is

the most likely signal path that we are trying to find.

Figure 1- Actual Flow of Viterbi Algorithm

Associated with each trellis state S at time n is a state metric

which is the accumulated metric along the shortest path leading to

that state. The state metrics at time n can be recursively calculated

in terms of the state metrics of the previous iteration as follows:

PMi+1 =min (PMi +BMi,i+1, PMj+BMj,i+1); (1)

PMj+1 =min (PMi +BMi,j+1, PMj+BMj,j+1); (2)

where i+1 is a predecessor state of i and BMi,i+1 is the branch

metric on the transition from state i to state j. The qualitative

interpretation of this expression is as follows. By definition, the

shortest path into state j must pass through a predecessor state. If

the shortest path into j passes through i, then the state metric for

the path must be given by the state metric for i plus the branch

metric for the state transition from i to j. The final state metric for

j is given by the minimum of all possible paths. The recursive

update described by (1) and (2) are the ACS operation and are

implemented as shown in Fig. 1 for the four-state trellis example.

 Figure 2 (a) Predecessor states of state 00 (b) State metric

update for state 00, implemented using 2-way ACS

The update unit is referred to as a two-way ACS unit, because

there are two input branches for each state, In general, a state with

m-input branches requires an m-way ACS unit[2, 7]. As well as

calculating the updated state metric, the ACS unit outputs a

decision ds,n, which identifies the entering path of the minimum

metric.

 In order that the input sequence can be decoded, the survivor

path (shortest path) or signal through the trellis must be traced and

decoded. The two classical algorithms for survivor path storage

and decoding are the register-exchange method and the trace-back

method. Both algorithms require a recursive update which

fundamentally limits the throughput. Register-exchange is suitable

for low-complexity trellises and is high in throughput. Trace-back

is preferable for higher complexity trellises due to reduced area

and power dissipation, In the Viterbi decoder, the register-

exchange method is used to finish the survivor path storage and

decoding.

Since traceback approach lags behind Register exchange in

throughput, it’s more logical to apply throughput increasing

techniques on the traceback approach rather than register

exchange. With this methodology, I will be getting the reduced

area but also higher throughput.

4. OPTIMIZATIONS
A high speed implementation of the VA can only be achieved by

increasing the speed of computation of all its three units. Since the

ACS unit is much more complex, it is bottleneck which limits the

throughput rate but as every cloud has a silver lining, the “Good”

thing is that VA is recursive in nature. I have number of loops in

the algorithm. So more or less all of the optimization techniques

we studies in the course can be successfully employed on VA to

have a better performance. Some of the possible candidates can be

• Look Ahead Transformation

• Loop unrolling

• Retiming

• Systolic Array implementation

• Pipelining

As mentioned in Section 2, lot of work has been done using above

techniques mentioned above by exploiting the recursive nature of

the Viterbi Algorithm.

Since the main purpose of this project is to come up with such a

technique which gives a vectorized output, the only viable option

is “Look-Ahead Transformation”. Other techniques do help in

increasing throughput or in general performance but they don’t

serve the very purpose of giving notion parallel decoding of

number of bits. So for the rest of section, I will discuss the

implementation optimization using Look-Ahead technique only.

4.1Look-Ahead Transformation

The difficulty of pipelining the feedback algorithm was removed

by the use of look-ahead computation. Look-ahead can be used in

the form of pipelining [2], parallel processing [3], or both. In

order to understand the process of look-ahead, consider the flow

in the normal executaion in Figure 1. At each time interval,

branch metrics will be computed and the best path metric will be

decided on the basis of minimla vlue of the two possible path.

This process will continue till the trellis is completetly fileld. The

number of hops taken will be equal to the number of time stamps.

Figur 2 depicts this that for filling a trellis to ‘6’ time units, 6

compariosn needed to be done in ‘6’ hops.

 Now consider Figure 3, the actual flow is modified in such a way

that instead of going to time1 it goes directly to time2, this will

save the time spend at each node. In the new scenerio the

Figure 3- Look-Ahead Transformation M=1

compariosn will be done skipping each intermediate node. It is

also clear that earlier there were only two paths to reach a node

but with this modification the new path can enter a node from any

of the four nodes. This will incrase the size of my comparator at

each node, instead of selecting the best (minimum) between two,

now it has to slect the minimum among the four.

Similarly, taking the look-ahead step M=2, I will skip 2

intermediate nodes and ecah time jump to every 3rd node after

adding the respective branch metrics with the state metric. This

idea can be extended to skip all the intermediate stages & go

directly to the final node. But it depends on our application what

we are looking for.

Figure 4- Look-Ahead Transformation M=2

γ 2,n-1γ 0,n-1 γ 0,nn
λ 20,n-1λ 00,n-1n-10010 γ0,n-1

γ2,n-1 γ0,nd 0,n
(a) ++Add Compare Selectλ 00,n-1

λ 20,n-1(b)

The expressions in (1) and (2) now become

PMi+1 =min(PMi+BMi,i+1,PMj+BMj,i+1,,PMk+BMk,i+1,

PMl+BMl,i+1); (3)

PMj+1 =min(PMi+BMi,j+1,PMj+BMj,j+1,,PMk+BMk,j+1,

PMl+BMl,j+1); (4)

PMk+1 =min(PMi+BMi,k+1,PMj+BMj,k+1,,PMk+BMk,k+1,

PMl+BMl,k+1); (5)

PMl+1 =min(PMi+BMi,l+1,PMj+BMj,l+1,,PMk+BMk,l+1,

PMl+BMl,l+1); (6)

These effects are also visble in Figure1-3.

After completion of filling the trellis the next step is decoding the

bits from the information gethered. Genrally we start from the end

and move each time interval back to get to the adjacent previous

best state. Thus if there are ‘6’ bits in my block I have to go back

6 hops decoding a single bit during each backward hop. Also I

know that the present state can be achieved form two possibel

states the decoding table will be simple as well.

But with the new implementation, say M=1 I will skip ‘5’ will

directly go to ‘4’ and judge from the metrcs computed that which

among the four is the best previous state. Thus increasing the

complexity of the decoding table. Its also evident that with this

approach instead of ‘6’ hops I will get at all the bits decoded with

only ‘3’ hops, each hop givinig me ‘2’ bits. Similarly, for M=2,

the hop count will further decrease to only 2 with three bits

decoded at each hop. The step size can thus be varied to any value

to even get all the bits on a single hop.

5. IMPLEMENTATION
In order to establish the authenticity of the proposed optimization

in the Algorithm, I have done some simulations. Matlab is used as

the simulation environment. Results are collected for three

versions of the simulation, namely

• The uncoded version

• Viterbi Decoding without look-ahead

• Viterbi Decoding with Look-ahead

The parameters chosen for the simulation are listed in Table 2. For

simplicity the results are shown for K=3, r=1/2, M=1. The logic

behind is that if it’s true for the simple case than depending on our

requirement we can extend the parameters to suit our needs.

Another important parameter is the soft-decision decoding,

although it is also an optimization (over the hard-decision) but its

effect are not discussed as it has nothing to do with the

throughput. I am also using block processing of data instead of

sample by sample processing. With block processing I have all the

bits that need to be processed, so their branch metrics can be

computed in the initial stage without waiting for them. This gives

a lot of freedom for the look-ahead transformation.

I am not only recording the efficiency in time but also the

performance of the proposed design. The reason being this may be

possible that it may be running faster but running poor in the

performance. In that case the speed will be useless, as it will be

failing to fulfill its foremost purpose of Forward Error Correction.

For this a BER comparison is done between the original version

of VA and the optimized one.

for i = 1:length(recieved_input)/2

path_mat1 = path_mt_array(1,1) + br_mat(1,i);

path_mat2 = path_mt_array(2,1) + br_mat(4,i);

[best_mat(1,1) state]= min([path_mat1,path_mat2]);

surv_st(1,1) = state;

end

Figure 5- Part of code w/o Look-Ahead

Figure 4 and Figure 5 shows a portion of the actual codes. One

can also judge form these snippets that the loop is running for half

the time in case of look-ahead. And in case of look-ahead a

comparison is done between four possible options instead of only

two.

for i = 1:length(recieved_input)/4

path_mat1 = path_mt_array(1,1) + br_mat(1,2*i-

1)+br_mat(1,2*i);

path_mat2 = path_mt_array(2,1) + br_mat(4,2*i-

1)+br_mat(1,2*i);

path_mat3 = path_mt_array(3,1) + br_mat(3,2*i-

1)+br_mat(4,2*i);

path_mat4 = path_mt_array(4,1) + br_mat(2,2*i-

1)+br_mat(4,2*i);

[best_mat(1,1) state] =

min([path_mat1,path_mat2,path_mat3,path_mat4]);

surv_st(1,1) = state;

end

Figure 6- Part of code with Look-Ahead

Parameter Value

Constraint Length K=3

Data Length 10^5 samples

Generator

polynomial

(7,5)8

Rate r=1/2

Look-Ahead step M=1

Modulation BPSK

 Block Processing

 Soft-decision

 Trace-back decdoing

Table 1- Simulation Parameters

 It is also worth mentioning that both the versions of the VA are

using block processing for a fair comparison.

6. RESULTS
Results are presented in this section. The results look very

encouraging. The reported speed up Table 1, with only one look-

ahead step (M=1) is roughly 50% reduction in execution time.

 Sequential VA Optimized VA

Execution Time in

seconds

38.3294 20.0305

Table 2- Simulation Results

The BER performance curve of the different simultaion sare

shown in Figure. The curve clearly shows that the opimized

design provides the speed up without any performance loss. The

optimizaed BER performance is the same as that of the

unoptimized one.

Figure 7- BER comparison of Actual and Proposed design

7. CONCLUSIONS
In this project look-ahead technique has been exploited to create

the desired level of concurrency in the sequential design of Viterbi

Algorithm. It’s clear from the results that Viterbi decoding can be

optimized using the Look-Ahead transformation technique to give

a vectorized output. The choice of look-ahead step is application

dependent. It’s quite interesting that the decrease in execution

time is extremely high with only a single look-ahead step. This

may lead the designers to opt for this approach despite the

expected large hardware requirements.

Although this algorithm can be implemented in a few lines of

code, its storage space increases exponentially with each

additional level of look-ahead. Also the computational

complexity increases exponentially to compute the next set of

matrices. For un-optimized VA the look-up table for decoding

only require one bit of storage while in the case of look-ahead

implementation the size of look up table increases exponentially

with the increase of look-ahead step. Therefore, for large levels of

look-ahead this algorithm would be hard to use. At the same time,

the physical hardware needed to implement many levels of look-

ahead would become a limiting time and space constraint.

8. FUTURE WORK
In this project I have considered a vectorized high throughput

implementation of Viterbi decoder in Matlab, the next logical step

would be to go for a hardware implementation of the proposed

algorithm. This will be more challenging as while designing the

optimized VA no consideration has been put on the hardware cost.

The design considered in this project supports the binary

convolutional codes only. It will be interesting to investigate the

design for non binary case.

From the implementation point of view, the proposed design also

faces the problem that it leads to high latency for look-ahead ACS

precomputations. Parhi et al have looked into this matter but still

more work needed to be done in this regard.

9. REFERENCES
[1] G.Fettweis and H. Meyr, “Parallel Viterbi decoding by

breaking the compare-select feedback bottleneck” in Proc.

IEEE Int. Conf. Communications, pp.719-723, June 1988.

[2] H. Thappar and J. Cioffi, “A block processing method for

designing high-speed Viterbi decoders” in Proc. IEEE Int.

Conf. Communications, pp. 836-840, 1989

[3] K.K. Parhi, “Look-Ahead in Dynamic Programming and

Quantizer Loops” in IEEE Int. Conf. Circuits and Systems,

1989

[4] J.J.Kong and K.K.Parhi, “K-nested layered look-ahead

method and architectures for high throughput Viterbi

decoder,” in Proc. 2003 IEEE Workshop on Signal

Processing Systems, pp. 99-104

[5] K.K. Parhi, “High-Speed VLSI Architectures for Huffman

and Viterbi Decoders”, IEEE 1992

[6] M.F.Batcha and A.Z.Sha’ameri, “Configurable Adaptive

Viterbi Decoder for GPRS, EDGE and Wimax” IEEE Conf.,

May2007K.K. Parhi, “High-Speed VLSI Architectures for

Huffman and Viterbi Decoders”, IEEE 1992

[7] S.Nandula,Y.S Rao, and S.P. Embanath, “High speed area

efficient configurable Viterbi decoder for WiFi and WiMax

systems, ” June 2007

[8] G. Fettweis, L.Thiele, G.Meyr "Algorithm transformations

for unlimited parallelism" IEEE Transactions on Very Large

Scale Integration (VLSI) Systems (VLSI) SYSTEMS) 15

(2007).

[9] J.G. Back, S.H. Yoon, and J.W. Chong "Memory Efficient

Pipelined Viterbi Decoder with Look-Ahead Traceback."

IEEE (2001).

[10] G.D.Forney, Jr., "The Viterbi Algorithm," IEEE Proceedings,

Vol.61, pp. 268-279, March 1973

[11] G.Fettweis and H. Meyr, "High-Speed Parallel Viterbi

Decoding: Algorithm and VLSI-Architecture " IEEE

Communication Magazine, May 1991

[12] H.D.Lin and D.G.Messerschmit, "Algorithms and

architectures for concurrent Viterbi decoding," in Conf. Rec.

1989 IEEE Int. Conf. Communications, vol.2, pp. 836-840

[13] J.J.Kong and K.K.Parhi, “Low-Latency Architectures for

High-Throughput Rate Viterbi Decoders,” in Proc. 2004

IEEE Transactions on VLSI Systems, pp. 99-104

[14] D.G.Messerschmit and H.D.Lin" Arbitrarily High Speed

Viterbi Decoders," UC Berkley, 1988

[15] C.Y.Chang and K.Yao. "Viterbi decoding by systolic arrays,

" in Proc. Ann. Allerton Conf. Communications, Controls,

and Computing, pp. 430-439, Oct 1985

[16] S.H. Choi and J.J.Kong, "State Parallel Viterbi Decoder Soft

IP and Its Applications" IEEE 2001.

0 1 2 3 4 5 6 7 8 9 10
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No, dB

B
it
 E

rr
o
r

R
a
te

BER comparision for different Viterbi decoding imlementations for BPSK in AWGN

theory - uncoded

simulation - Viterbi sequential

simulation - Viterbi parallel

[17] S.C.Kim, J.H.Ryu, and J.D Cho, “Low Power , High Rate

Viterbi decoder employing the SST Scheme and Radix-4

Trellis”

