1254

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 55, NO. 12, DECEMBER 2008

Hardware Efficient Low-Latency Architecture for
High Throughput Rate Viterbi Decoders

Chao Cheng, Student Member, IEEE, and Keshab K. Parhi, Fellow, IEEE

Abstract—By optimizing the number of look-ahead steps of the
first layer of the previous low-latency architectures for M-step
look-ahead high-throughput rate Viterbi decoders, this paper
improves the hardware efficiency by large percentage with slight
increase or even further decrease of the latency for the add-com-
pare-select (ACS) computation. This is true especially when the
encoder constraint length (K) is large. For example, when K = 7
and M varies from 21 to 84, 20.83% to 41.27% of the hardware
cost in previous low latency Viterbi method can be saved with
only up to 12% increase or 4% decrease of the latency of the
conventional M-step look-ahead viterbi decoder. The proposed
architecture also relaxes the constraint on the look-ahead level
M to be a multiple of K as was needed in the previous work. For
example, when K = 7 and M (indivisible by K) varies from 40 to
80, 60.27% to 69.3% latency of conventional M-step look ahead
Viterbi architecture can be reduced at the expense of 148.62% to
320.20% extra hardware complexity.

Index Terms—Add-Compare-Select (ACS), high-throughput
rate Viterbi decoder, look-ahead implementation, low latency
viterbi decoder.

1. INTRODUCTION

ITERBI algorithm is an efficient decoding algorithm for
V decoding convolution codes. It is widely used in commu-
nication systems. M-step look-ahead technique can efficiently
combine M trellis steps of Viterbi decoder into one trellis step
and is thus frequently used for high-throughput Viterbi applica-
tions [1]-[8].

Conventional M-step look-ahead methods [1]-[7] have the
problem of long latency, which usually increases linearly with
M. For high-speed communication systems operating at speed
in the range of Gb/s, M is usually large.

For the first time, parallel trellis paths of length-K coverage is
exploited in [8] to present a novel low latency approach, which
combines K trellis steps in the first layer into M/K subtrellis
steps and then combines subtrellis steps into a tree structure.
This K-nested layered M-step look-ahead method can efficiently
reduce latency. However, its drawback is the high hardware
complexity, especially when K is large. Furthermore, M is con-
strained to be a multiple of K and its latency in many cases can
be further lowered.

In this paper, we combine the hardware efficiency of conven-
tional and the low latency of the K-nested layered M-step Viterbi

Manuscript received December 18, 2007; revised May 17, 2008. Current ver-
sion published December 12, 2008. This paper was recommended by Associate
Editor W. X. Zheng.

The authors are with Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
chaocheng @ieee.org; parhi@umn.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII.2008.2008061

Fig. 1. Trellis diagram (a) when K = 3 and M = 2 and (b) when K = 3 and
M = 3.

decoding method to develop a new hardware efficient method
for combining the M trellis steps. The look-ahead steps in the
first layer are increased to K1 (K < K1 < M). Since we have
parallel paths when K1 > K, we can carry out ACS-precompu-
tation. We will show that the conventional and K-nested layered
Viterbi methods are special cases of the proposed method for
K1 = M and K1 = K, respectively.

This paper is organized as follows. The conventional and the
K-nested layered M-step Viterbi methods are reviewed and ana-
lyzed in Section II. The proposed hardware efficient low latency
Viterbi method is discussed through analysis of 4 examples in
Section III. Additional case studies and analysis are presented
in Section IV.

II. A REVIEW ON PREVIOUS M-STEP LOOK-AHEAD
VITERBI METHOD

We present a review of previously proposed M-step look-
ahead Viterbi Decoders: Conventional [1]-[7] and K-nested lay-
ered low latency M-step look-ahead Viterbi decoder [8].

A. Conventional M-Step Look-Ahead Viterbi Decoder

When M = 2, K = 3, the trellis structure can be represented
as Fig. 1(a). In this example, the number of states is 25~ = 4.
/\f’] denotes the branch metric.

For example, A%y = A%+ A0t and A2y, = A+ AL, Since
M < K, we can’t have precomputation of ACS. The number of
required 2-input adders and compare-select (CS) units in typical
design can be given by 251 x 2K—1 and 2K -1 x (2K-1 1),
respectively.

When M = 3, K = 3, the trellis structure can be represented
as Fig. 1(b). Since M = K, we can have precomputation of ACS
with 2 parallel paths. For example, we have Aj, = max{A{, +
Aot A2 A 4+ AT 4 A5F2}. The number of required
2-input adders and CS units can be given as 251 x (22 +
25 and 25 =1 x 251 respectively. Similar hardware diagram
corresponding to Fig. 1(b) can be found in Fig. 3 of [8]. The
latency is K = 3 clock cycles.

When M = 4 and K = 3, the trellis structure can be repre-
sented as shown in Fig. 2. Since M = 4 and K = 3, we can

1549-7747/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 25, 2008 at 19:59 from IEEE Xplore. Restrictions apply.

CHENG AND PARHI: HARDWARE EFFICIENT LOW-LATENCY ARCHITECTURE FOR HIGH THROUGHPUT RATE VITERBI DECODERS

il @ <2 yre

by
S

A

Fig. 3. Conventional Trellis diagram when K = 3 and M = 4, (a) with 3-step
look-ahead first; (b) 4-step look-ahead.

Fig. 4. Conventional Trellis diagram when K = 3 and M > 3, (a) with (M-1)-
step look-ahead first; (b) M-step look-ahead.

have precomputation of ACS with 2 ~K+1 — 4 parallel paths
shown in Fig. 2 as () — @. For example, we have

Noo = max {AGy + A + A5g + Age®, Ay + AT
+ 2507 4 50 Ao + AT AT 4+ A5
A1+ AT 4 A5+ AL
= max {max (Ao + Ago™ + 5o, Afy + AT+ A5
+ Ao max (A + Agi + AT,
o1 AT+ AR+ A5

The above equation can be illustrated by the bold parallel
paths O — @) in Fig. 2, which can thus be represented as Fig. 3.

The number of required 2-input adders and CS units can be
given as 2571 x (22 4 25) 4 2K -1 % 2K 1 x 9 and 2K -1 x
2K -1 4 9K=1 » 9K—1 respectively. The latency is K +2 =5
clock cycles.

By iteratively applying the above process, we can get the con-
ventional Trellis diagram when K = 3 and M > 3 as shown in
Fig. 4.

The number of required 2-input adders and comparators can
be givenas 25 1 x4 x (2K -2 —1) 42K 1 x 2K x (M — K +1)
and 25-1 x 2K=1 x (M — K + 1), respectively. The latency
is K + 2(M — K) = 2M — K clock cycles.

B. Low-Latency M-Step Look-Ahead Viterbi Decoder

K-Nested layered look-ahead method is proposed in [8]. This
method assumes M is a multiple of K. For example, when K = 3
and M = 12, trellis diagram is shown in Fig. 2 of [8]. We can see

1255

Fig. 5. Parallel path combination process after layer 2 in [8].

n+s n+6 n+ll n+l2

XX

n n+3 n+4 nt+9 n+10

Fig. 6. Proposed trellis diagram for K = 3, M = 12 and K1 = 6; (a)—(b):
layer 1-2.

TABLE 1
SUMMARY FOR THE CASE OF K = 3 AND M = 12
Proposed (K1=6) Conventional [8]
Latency 12 21 9
2-input adders 528 496 592

that, starting from layer 2, the parallel path combination process
can be represented as shown in Fig. 5.

The number of required 2-input adders and comparators in
this process can be given as 25 ~1 x 2K =1 x 2K -1 gpd 2K -1 «
2K -1 x (2K-1 — 1), respectively; and the total hardware cost
for ACS precomputation is given as

CKang = Cadd + CCS_’I‘Z + CCS_T:I: X (2K_1 - 1)

where
4M M
Caga =251 x [7 x (2B71_1) 42K 1)2x <?—1)}
M
Cos_ro = (25712 x 57d

M
Ccs rz = (2K_1)2 X (? — 1) .

Compared with the conventional ACS-precomputation
trellis for M-step look-ahead Viterbi decoders as shown in
Fig. 4, which has the hardware cost increase in the order of
O((2K-1)%) = O(4K), that of [8] increases in the order
of O((2Kﬁ1)3) = O(8%). This is also the reason why the
hardware cost increases fast when K is large.

‘We can also see that the first layer of [8] is the same as the con-
ventional K-step look-ahead architecture as shown in Fig. 1(b).
The hardware cost of the first layer thus increases in the order of
O((2K-1)%) = O(4%). Since increasing the look-ahead steps
of the first layer will decrease the number of parallel combina-
tion process blocks as shown in Fig. 5, the total hardware cost

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 25, 2008 at 19:59 from IEEE Xplore. Restrictions apply.

1256

n n+3 n+4

n+7 n+§lp+16 n+19 n+20 n+23 n+24 n+27
W</
NSNS
A QL
,0‘ 5> &5

e

p——————e—— s

—ar S

- — =

Fig. 7. Proposed trellis diagram for K = 3, M = 27 and K1 = 4; (a)—(d):
layer 1-4.

TABLE II
SUMMARY FOR THE CASE OF K = 3 AND M = 27
Proposed (K1=4) Conventional [8]
Latency 14 51 15
2-input adders 1408 1216 1472

can thus be controlled and the number of layers can be poten-
tially reduced. Although increasing the look-ahead steps in the
first layer will increase the latency, the final latency is also af-
fected by the number of layers.

III. PROPOSED HARDWARE EFFICIENT LOW-LATENCY M-STEP
LOOK-AHEAD VITERBI DECODER

The existence of parallel paths is required for the precom-
putation of ACS. When the look-ahead step is a number larger
than K, there are definitely parallel paths, because the number
of parallel paths is equal to 2 ~K+1_Since the look-ahead step
of the first layer is always K in [8], we use K1 to represent that
of the proposed design in this paper where K < K1 < M. The
proposed design is illustrated with 4 examples in this section.

Example 1: K = 3, M = 12 and K1 = 6.

The proposed trellis diagram is shown in Fig. 6 and the hard-
ware complexity and latency are summarized in Table I. From
Table I, we can see that the proposed design can save 64 adders.
Although latency increases by 3 clock cycles from the previous
K-nested layered method, it is still far away from its conven-
tional counterpart.

M = 27 does not need to be a multiple of K1.

Example 2: K = 3, M = 27 and K1 = 4.

The proposed trellis diagram is shown in Fig. 7 and the per-
formance characteristics of the proposed architecture are sum-
marized in Table II.

From Table II, we can see that we can save 64 adders of pre-
vious design in [8]. Furthermore, latency is further reduced by
1 clock cycle.

M does not need to be multiples of K either.

Example 3: K = 3, M = 11 and K1 = 4.

The proposed trellis diagram is shown in Fig. 8.

Increasing K1 will potentially increase the latency and reduce
the total hardware cost. This is illustrated in Example 4.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 55, NO. 12, DECEMBER 2008

(c)

Fig. 8. Proposed trellis diagram for K = 3, M = 11 and K1 = 4; (a)—(c):
layer 1-3.

n+l10

n+11

Fig. 9. Proposed trellis diagram for K = 3, M = 11 and K1 = 6; (a)-(b):
layer 1-2.

TABLE III
SUMMARY FOR THE CASEOF K = 3 AND M = 11
Proposed (K1=4) | Proposed (K1=6) | Conventional
Latency 11 12 19
2-input adders 512 480 448

Example 4: K = 3, M = 11 and K1 = 6.

The proposed trellis diagram is shown in Fig. 9. Performance
characteristics for architectures in Examples 3 and 4 are sum-
marized in Table III.

In the proposed M-step look-ahead method, the first layer
is composed of |[M/K1] Kl-step and one mod(M,K1)-step
conventional look-ahead blocks. The later layers include
[M/K1] — 1 parallel combination blocks (Fig. 5). The total
number of layers is 1 + [log,([M/K1])].

From Examples 1 through 4, we can see that the proposed low
latency M-step look-ahead Viterbi architecture is a combination
of conventional (K1 = M) and K-nested layered (K1 = K)
method. When K1 increases from K to M, latency increases but
hardware complexity is reduced. The best K1 can be searched
based on system requirement on latency and hardware cost. Ad-
ditional case studies are presented in the next section.

The hardware implementation of the proposed low latency
Viterbi decoder is similar to that of [8]. We take Example 1.
K = 3, M = 12 with variable K1 as an example. The first layer
ACS precomputation can be implemented as shown in Fig. 10.
We can see that the critical path is reduced as the computation
time of an adder or a CS after we apply pipelining. Considering
the fact that a CS unit can be implemented by an adder and a

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 25, 2008 at 19:59 from IEEE Xplore. Restrictions apply.

CHENG AND PARHI: HARDWARE EFFICIENT LOW-LATENCY ARCHITECTURE FOR HIGH THROUGHPUT RATE VITERBI DECODERS

_Poo(’l+6)

o) (n+6)

T’02(’1"“6)

 [Pos(r+6)

| K1=3
| K1=6

Fig. 10. Hardware Architecture for computing first layer trellis paths from
state-0 in stage n to state-0-3 in stage n + 6 with M = 12 and K1 = 6.

TABLE IV
COMPARISON OF LATENCY AND COMPLEXITY FOR ACS PRECOMPUTATION
WHEN K = 3
Latency Complexity (#adder)
M (K=3) [Proposed
o IO o i [0
Conv.) : : .
3 (K1=3) [3(100.00%) [3(100.00%)|3 64(0.00%) |64 |64
6 (K1=3) [6(66.67%) 6(66.67%) |9 240(0.00%) [240 [208
9 (K1=4) |10(66.67%) [9(60.00%) |15 384(7.69%) 416 [352

12 (K1=6) [12(57.14%) [9(42.86%) |21
15 (K1=4) [11(40.74%) [12(44.44%)[27
18 (K1=5) [13(39.39%) [12(36.36%)[33
21 (K1=6) [15(38.46%) [12(30.77%)[39
24 (K1=6) [15(33.33%) [12(26.67%)[45
27 (K1=4) [14(27.45%) [15(29.41%)]51
30 (K1=5) [16(28.07%) [15(26.32%)[57
33 (K1=5) [16(25.40%) [15(23.81%)[63
36 (K1=6) [18(26.09%) [15(21.74%)[69
39 (K1=5) [16(21.33%) [15(20.00%)|75
42 (K1=6) [18(22.22%) [15(18.52%)]81
45 (K1=6) [18(20.69%) [15(17.24%)[87
48 (K1=6) [18(19.35%) [15(16.13%)[03

528(10.81%)[592 |496
736(4.17%) [768 640
880(6.78%) [944 [784
1024(8.57%) [1120[928
1168(9.88%) [1296]1072
1408(4.35%) [1472[1216
1520(7.77%) [1648[1360
1696(7.02%) [1824]1504
1808(9.60%) [2000{1648
2016(7.35%) [2176[1792
2128(9.52%) [2352[1936
2304(8.86%) [2528[2080
2448(9.47%) |2704|2224

selector and the computation time of a selector is small, we can
approximate the critical path of first layer ACS precomputation
as the computation time of an adder.

Note, the hardware diagrams of the second and later layers
are not covered in this paper because similar structures have
been discussed in detail in previous K-nested layered M-step
look-ahead Viterbi method [8]. The survivor path management
is similar to that in [8], and is not addressed in this paper.

IV. COMPARISON AND ANALYSIS

The hardware complexity and latency of the proposed low la-
tency M-step look-ahead Viterbi method is given in (1) and (2),
respectively. Cugq—1s¢ and C.s_14 are the number of adders
and comparators in the first layers, respectively. C,gq—2—1q4st

1257
TABLE V
COMPARISON OF LATENCY AND COMPLEXITY FOR ACS PRECOMPUTATION
WHEN K = 4

Latency Complexity (#adder)

M (K=4) [Proposed . .
(Over [8] (Over Conv. PTOPOSEd [8] |Conv.

Conv.) (Saved)

Conv.)

4 (K1=4) |4(100.00%) [4(100.00%) 4
8 (K1=4) [8(66.67%) [8(66.67%) |12
12 (K1=6)[12(60.00%) [12(60.00%) [20
16 (K1=8)|16(37.14%) [12(42.86%) |28
20 (K1=5)|14(38.89%) |16(44.44%) 36
24 (K1=6)|16(36.36%) |16(36.36%) |44
28 (K1=7)|18(34.62%) |16(30.77%) |52
32 (K1=8)20(33.33%) |16(26.67%) |60
36 (K1=6)[20(29.41%) [20(29.41%)|68
40 (K1=5)|18(23.68%) [20(26.32%) |76
44 (K1=5)[22(26.19%) [20(23.81%) |84
48 (K1=6)[20(21.74%) [20(21.74%) |92

288(0.00%) [288 |288
1536(0.00%) (1536 [1056
2304(17.24%) 2784 |1824
3072(23.81%) |4032 |2592
4800(9.09%) [5280 (3360
5568(14.71%) |6528 4128
6336(18.52%) |7776 14896
7104(21.28%) 9024 |5664
8832(14.02%) |10272]6432
10560(8.33%) |11520{7200
11808(7.52%) |12768|7968
12096(13.7%) |14016(8736

TABLE VI
COMPARISON OF LATENCY AND COMPLEXITY FOR ACS PRECOMPUTATION
WHENK =5

M (K=5) |Latency

Proposed [8] (Over |Con
(Over Conv.)|Conv.) v.

5(K1=5) [5(100.00%) [5(100.00%)|5
10 (K1=5)[10(66.67%) |10(66.67%)|15
15 (K1=7)[16(64.00%) [15(60.00%)[25
20 (K1=9)[22(62.86%) |15(42.86%) 35
25 (K1=6)|19(42.22%) [20(44.44%)[45
30 (K1=7)[23(41.82%) |20(36.36%)55
35 (K1=8)[27(41.54%) [20(30.77%)65
40 (K1=9)[31(41.33%) [20(26.67%)75
45 (K1=7)[30(35.29%) [25(29.41%)[85 |58496(21.41%) |74432 31936
50 (K1=6)[26(27.37%) [25(26.32%)[95 |72960(12.71%) |83584 [35776
55 (K1=6)[29(27.62%) [25(23.81%)105 [82112(11.46%) (92736 [39616
60 (K1=7)[32(27.83%) [25(21.74%)[115 [80640(20.85%) |101888[43456

Complexity (#adder)

Proposed (Saved) |[8] Conv.

1216(0.00%) 1216 |1216
10368(0.00%) 10368 |5056
14208(27.21%) [19520 [8896
18048(37.05%) [28672 12736
32512(14.04%) [37824 16576
36352(22.62%) 46976 20416
40192(28.39%) |56128 |24256
44032(32.55%) 65280 [28096

and C.s_2 145 are the number of adders and comparators in
the second to last layers, respectively. Lyroposed 18 the latency
for the proposed design.

CProposed = Cadd_1st + Cadd_2_1ast + Ccs_1st + Ccs 2 1ast
(D

where

Cadd_lst
2B [ax (251 —1) 42K "1 x2x (K1-K))]
xM/K1,
when mod(M, K1)=0
2K [Ax (2571 —1)+ 2871 x 2% (K1- K)]
X|M/K1]+2K-1
X [4x (281 —1)+25"1x2
X (mod(M,K1)-K)],
\ when mod(M,K1)>K
Cuddo_tast = 25X I x (2512 x ([M/K1]-1),
Ces_atast = (25 N2 x([M/K1]—1)x (2571 =1)
(2F=1)2x (K1-K+1)x M/K1,
when mod(M, K1)=0

Cesto =4 (K25 (K1— K+1)x [M/K1]+ (2512
X [mod(M, K1)—K+1],
when mod(M, K1) > K
Lproposed
= K+2x(K1-K)+K x [log,(M/K1)] 2)

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 25, 2008 at 19:59 from IEEE Xplore. Restrictions apply.

1258

TABLE VII
COMPARISON OF LATENCY AND COMPLEXITY FOR ACS PRECOMPUTATION
WHEN K = 7
Latency Complexity (#adder)
(= Proposed
M&=7) (Ov‘;r [8] (Over Con Proposed (Saved) |[[8] Conv.
Conv.) Conv.) \2
7(K1=7) 7(100.00%)|7(100.00%)|7 [20224(0.00%) [20224 20224
14 (K1=7) [14(66.67%)[14(66.67%)[21 |560640(0.00%) 560640 (106240
21 (K1=10) [22(62.86%)|21(60.00%) |35 |646656(41.27%) 1101056 |192256

28 (K1=9) |27(55.10%) [21(42.86%) |49
35 (K1=9) |25(39.68%)|28(44.44%) (63
42 (K1=11)29(37.66%) [28(36.36%)|77 |1813504(33.38%) 2722304 [450304
49 (K1=12)33(36.26%) [28(30.77%) |91 [1899520(41.78%) 3262720 536320
56 (K1=14) [35(33.33%) |28(26.67%)|105 |1985536(47.79%) |3803136 |622336
63 (K1=9) [32(26.89%)35(29.41%)|119 |3434752(20.92%) |4343552 (708352
70 (K1=10) [34(25.56%)|35(26.32%)|133 |3520768(27.91%) 4883968 |794368
77 (K1=10)|34(23.13%)|35(23.81%) 147 |4061184(25.13%) |5424384 |880384
84 (K1=11)[36(22.36%)|35(21.74%)|161 |4147200(30.47%) |5964800 |966400

1187072(27.68%) |1641472 278272
1727488(20.83%) |2181888 364288

TABLE VIII
COMPARISON OF LATENCY AND COMPLEXITY FOR ACS PRECOMPUTATION
WHEN K = 7 FOR VARIOUS M INDIVISIBLE BY K

Latency Complexity (#adder)

M (K=7)
Proposed(Over Conv. |Proposed (Saved) |Conv.
Conv.)

40 (K1=14) |29(39.73%) |73
50 (K1=13) |33(35.48%) |93
60 (K1=15) |37(32.74%) |113
80 (K1=20) [47(30.72%) |153

1788928(420.20%) (425728
1911808(348.48%) [548608
2034688(303.01%) 671488
2280448(248.62%) 917248

Based on (1) and (2) and the analysis of previous M-step look-
ahead Viterbi methods in Section II, We carry out several case
studies, which are summarized in Table IVthrough Table VIII.

When M is not a multiple of K, the proposed design is still
efficient, although the K-nested layered look-ahead method in
[8] can’t be applied. This has been shown in Example 3 and 4
for K = 3. The efficiency of the proposed low latency M-step
Viterbi method is shown in Table VIII for K = 7 with various
M indivisible by K. Note that the proposed design can have even
less latency for certain M and K because of the reduced layers, as
inexample, M = 15, K1 = 4and M = 27, K1 = 4 in Table IV.

From the above analysis, we can see the flexibility of the pro-
posed M-step look-ahead Viterbi method. Hardware and latency
can be balanced easily by choosing different values for K1 as
shown in Fig. 11. Best K1 can be found by looking for the lowest
adder ratio for a required latency. For example, in [8], design of
a 4-state 10 Gb/s SERDES requires a latency of less than 60
ns. For an implementation with 0.13-um technology, 48-stage
ACS precomputation with previous low latency design has a la-
tency of 15 x 1.5 = 22.5 ns. The proposed design has latency
of 18 x 1.5 = 27 ns and can still satisfy the latency require-
ment. However, our design saves 9.47% hardware complexity
as shown in the last row of Table IV.

V. CONCLUSION

Low latency M-step look-ahead Viterbi decoder for high
throughput rate implementation is important for many applica-
tions. This paper optimizes the hardware efficiency and latency
of previous low latency K-nested layered Viterbi method by
increasing the look-ahead steps in the first layer. The remaining
layers are combined with the same scheme used in [8]. The

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 55, NO. 12, DECEMBER 2008

06 /

04t ’ .

30

08¢

04rp

K1

———— Latency Ratio(Prop /Conv.)

—— Adder Ratio (Prop./Kong)

Fig. 11. Search process for best K1 when K = 7 and M = 28/42.

results from extensive case studies show that proposed design
is efficient in terms of both hardware complexity and latency.
Furthermore, the limitation on the look-ahead steps M (to be a
multiple of K) is relaxed.

REFERENCES

[1] G. Fettweis and H. Meyr, “Parallel Viterbi algorithm implementation:
Breaking the ACS-bottleneck,” IEEE Trans. Commun., vol. 37, no. 8,
pp. 785-790, Aug. 1989.

[2] G.Fettweis and H. Meyr, “High-rate Viterbi processor: A systolic array
solution,” IEEE J. Sel. Areas. Commun., vol. 8, pp. 1520-1543, Oct.
1990.

[3] G.Fettweis and H. Meyr, “High-speed parallel Viterbi decoding: Algo-
rithm and VLSI-architecture,” IEEE Commun. Mag., pp. 4655, May
1991.

[4] T.Gemmeke, M. Gansen, and T. G. Noll, “Implementation of scalable
power and area efficient high throughput Viterbi decoders,” IEEE J.
Solid-State Circuits, vol. 37, no. 7, pp. 941-948, Jul. 2002.

[5] V.S.Gierenz, O. Weis, T. G. Noll, I. Carew, J. Ashley, and R. Karabed,
“A 550 Mb/s radix-4 bit-level pipelined 16-state 0.25-um CMOS
Viterbi decoder,” in Proc. 2000 IEEE Int. Conf. Application-Specific
Syst., Architectures, and Processors, pp. 195-201.

[6] K. K. Parhi, “An improved pipelined MSB-first add-compare-select
unit structure for Viterbi decoders,” IEEE Trans. Circuits Syst., I: Reg.
Papers, vol. 51, no. 3, pp. 504-511, March 2004.

[7] P. J. Black and T. H. Meng, “A 140-Mb/s, 32-state, radix-4 Viterbi
decoder,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1877-1885,
Dec. 1992.

[8] J. Kong and K. K. Parhi, “Low-latency architectures for high-
throughput Viterbi decoders,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 12, no. 6, pp. 642-651, Jun. 2004.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 25, 2008 at 19:59 from IEEE Xplore. Restrictions apply.

