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ABSTRACT 
Today’s data reconstruction in digital communication systems 

requires designs of highest throughput rate. The Viterbi Algorithm 

is a key element in such digital signal processing applications. 

The non-linear and recursive nature of the Viterbi decoder makes 

its high-speed implementation challenging. Several promising 

approaches to achieve high throughput have been proposed in the 

past. In this project one such technique, look-ahead, is studied for 

extracting vectorized output bits without taking into consideration 

the hardware cost involved. It came out that even with small steps 

of looking ahead the processing gains are very high.   

1. INTRODUCTION 
Convolutional coding and Viterbi decoding are widely used in 

modern digital communication systems, such as communication, 

satellite communication, and mobile communication, to achieve 

low-error rate data transmission. The Viterbi algorithm [10] is 

known to be an efficient method for the realization of maximum 

likelihood (ML) decoding of convolutional codes. It is based on 

the study of a weighted graph that is used for attempting the 

reconstruction of the input sequence to the convolutinal encoder 

based on the coded sequence received from a noisy channel. 

With the development of digital communications, high speed 

large Viterbi decoder are required to yield higher coding gain and 

provide large ability to transmit more data in the same channel. 

Latest wireless communication technologies like WiMAX is 

opening up new challenges in baseband hardware design and 

demanding high speed, area efficient and reconfigurable designs. 

As the data speeds are moving skywards, demand for high speed 

Viterbi decoders is increasing. The proposed design particularly 

will strive for a design optimized for high speed such that the at 

each clock cycle the decoder will be decoding a couple of bits 

instead of a single bit without compromising on performance so 

that it suits the requirements of latest wireless standards like 

802.16e. 
 
The add-compare select unit recursion in the Viterbi decoding 

algorithm contains feedback loops the speed of Viterbi decoding 

is limited by this iteration bound. In this project, I have 

implemented a look-ahead technique for combining several trellis 

steps into one trellis step in time sequence, for breaking the 

iteration bound of the Viterbi decoding algorithm. Results show 

that the proposed design gave a considerable gain in processing 

time. The next section contains the previous work done. Section 3 

describes the actual Algorithm followed by section 4 containing 

information about the optimizations techniques. Section 5 

describes the implementations followed by results in section 6 and 

conclusions in section 7.  

2. RELATED WORK 
Researchers have been working in the area of optimizing the 

Viterbi decoder for couple of years. Some tried to increase the 

throughput & reduce the area consumed by giving the idea of 

radix-4 approach instead of radix-2 [17]. The idea of systolic 

array processing is also not new in this regard for increasing the 

throughput [15]. Nandu et al. employed normalization & systolic 

array processing in their design [7]. Batcha et al. achieved high 

throughputs compatible with Wimax using pipelining [6]. 

Fettweis [1] also used pipelining for increasing the throughput of 

their design. The idea of using look-ahead for speeding up 

sequential architectures is also not new, Parhi investigated look-

ahead for Huffman decoding in the early 90’s [5].  

3. VITERBI ALGORITHM 
We can view the Viterbi algorithm as a dynamic programming 

algorithm for finding the shortest path through a trellis, and the 

algorithm can be broken down into the following three steps. 

• Weigh the trellis; that is, calculate the branch metrics. 

• Recursively compute the shortest paths to time n, in terms of 

the shortest paths to time n-1. In this step, decisions are used 

to recursively update the survivor path of the signal. This is 

known as add-compare-select (ACS) recursion.  

• Recursively find the shortest path leading to each trellis state 

using the decisions from Step 2. The shortest path is called 

the survivor path for that state and the process is referred to 

as survivor path decode. Finally, if all survivor paths are 

traced back in time, they merge into a unique path, which is 

the most likely signal path that we are trying to find. 

 
Figure 1- Actual Flow of Viterbi Algorithm 

 

Associated with each trellis state S at time n is a state metric 

which is the accumulated metric along the shortest path leading to 

that state. The state metrics at time n can be recursively calculated 

in terms of the state metrics of the previous iteration as follows:                    

PMi+1 =min (PMi +BMi,i+1, PMj+BMj,i+1);            (1) 

 

PMj+1 =min (PMi +BMi,j+1, PMj+BMj,j+1);            (2) 
 

where i+1 is a predecessor state of i and BMi,i+1 is the branch 

metric on the transition from state i to state j. The qualitative 

interpretation of this expression is as follows. By definition, the 

shortest path into state j must pass through a predecessor state. If 



the shortest path into j passes through i, then the state metric for 

the path must be given by the state metric for i plus the branch 

metric for the state transition from i to j. The final state metric for 

j is given by the minimum of all possible paths. The recursive 

update described by (1) and (2) are the ACS operation and are 

implemented as shown in Fig. 1 for the four-state trellis example. 

 Figure 2 (a) Predecessor states of state 00 (b) State metric 

update for state 00, implemented using 2-way ACS 

The update unit is referred to as a two-way ACS unit, because 

there are two input branches for each state, In general, a state with 

m-input branches requires an m-way ACS unit[2, 7]. As well as 

calculating the updated state metric, the ACS unit outputs a 

decision ds,n, which identifies the entering path of the minimum 

metric.  

  In order that the input sequence can be decoded, the survivor 

path (shortest path) or signal through the trellis must be traced and 

decoded. The two classical algorithms for survivor path storage 

and decoding are the register-exchange method and the trace-back 

method. Both algorithms require a recursive update which 

fundamentally limits the throughput. Register-exchange is suitable 

for low-complexity trellises and is high in throughput. Trace-back 

is preferable for higher complexity trellises due to reduced area 

and power dissipation, In the Viterbi decoder, the register-

exchange method is used to finish the survivor path storage and 

decoding. 

Since traceback approach lags behind Register exchange in 

throughput, it’s more logical to apply throughput increasing 

techniques on the traceback approach rather than register 

exchange. With this methodology, I will be getting the reduced 

area but also higher throughput. 

4. OPTIMIZATIONS 
A high speed implementation of the VA can only be achieved by 

increasing the speed of computation of all its three units. Since the 

ACS unit is much more complex, it is bottleneck which limits the 

throughput rate but as every cloud has a silver lining, the “Good” 

thing is that VA is recursive in nature. I have number of loops in 

the algorithm. So more or less all of the optimization techniques 

we studies in the course can be successfully employed on VA to 

have a better performance. Some of the possible candidates can be 

• Look Ahead Transformation 

• Loop unrolling  

• Retiming 

• Systolic Array implementation 

• Pipelining 

As mentioned in Section 2, lot of work has been done using above 

techniques mentioned above by exploiting the recursive nature of 

the Viterbi Algorithm. 

Since the main purpose of this project is to come up with such a 

technique which gives a vectorized output, the only viable option 

is “Look-Ahead Transformation”. Other techniques do help in 

increasing throughput or in general performance but they don’t 

serve the very purpose of giving notion parallel decoding of 

number of bits. So for the rest of section, I will discuss the 

implementation optimization using Look-Ahead technique only. 

 

4.1Look-Ahead Transformation 
 

The difficulty of pipelining the feedback algorithm was removed 

by the use of look-ahead computation. Look-ahead can be used in 

the form of pipelining [2], parallel processing [3], or both. In 

order to understand the process of look-ahead, consider the flow 

in the normal executaion in Figure 1. At each time interval, 

branch metrics will be computed and the best path metric will be 

decided on the basis of minimla vlue of the two possible path. 

This process will continue till the trellis is completetly fileld. The 

number of hops taken will be equal to the number of time stamps. 

Figur 2 depicts this that for filling a trellis to ‘6’ time units, 6 

compariosn needed to be done in ‘6’ hops. 

 Now consider Figure 3, the actual flow is modified in such a way 

that instead of going to time1 it goes directly to time2, this will 

save the time spend at each node. In the new scenerio the  

 

 
 

Figure 3- Look-Ahead Transformation M=1 

 
 

compariosn will be done skipping each intermediate node. It is 

also clear that earlier there were only two paths to reach a node 

but with this modification the new path can enter a node from any 

of the four nodes. This will incrase the size of my comparator at 

each node, instead of selecting the best (minimum) between two, 

now it has to slect the minimum among the four. 

Similarly, taking the look-ahead step M=2, I will skip 2 

intermediate nodes and ecah time jump to every 3rd node after 

adding the respective branch metrics with the state metric. This 

idea can be extended to skip all the intermediate stages & go 

directly to the final node. But it depends on our application what 

we are looking for.   

 
Figure 4- Look-Ahead Transformation M=2 
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The expressions in (1) and (2) now become  

 

PMi+1 =min(PMi+BMi,i+1,PMj+BMj,i+1,,PMk+BMk,i+1, 

PMl+BMl,i+1);            (3) 

 

PMj+1 =min(PMi+BMi,j+1,PMj+BMj,j+1,,PMk+BMk,j+1, 

PMl+BMl,j+1);           (4) 

 

PMk+1 =min(PMi+BMi,k+1,PMj+BMj,k+1,,PMk+BMk,k+1, 

PMl+BMl,k+1);           (5) 

 

PMl+1 =min(PMi+BMi,l+1,PMj+BMj,l+1,,PMk+BMk,l+1, 

PMl+BMl,l+1);           (6) 
 

These effects are also visble in Figure1-3. 

After completion of filling the trellis the next step is decoding the 

bits from the information gethered. Genrally we start from the end 

and move each time interval back to get to the adjacent previous 

best state. Thus if there are ‘6’ bits in my block I have to go back 

6 hops decoding a single bit during each backward hop. Also I 

know that the present state can be achieved form two possibel 

states the decoding table will be simple as well. 

But with the new implementation, say M=1 I will skip ‘5’ will 

directly go to ‘4’ and judge from the metrcs computed that which 

among the four is the best previous state. Thus increasing the 

complexity of the decoding table. Its also evident that with this 

approach instead of ‘6’ hops I will get at all the bits decoded with 

only ‘3’ hops, each hop givinig me ‘2’ bits. Similarly, for M=2, 

the hop count will further decrease to only 2 with three bits 

decoded at each hop. The step size can thus be varied to any value 

to even get all the bits on a single hop.  

5. IMPLEMENTATION 
In order to establish the authenticity of the proposed optimization 

in the Algorithm, I have done some simulations. Matlab is used as 

the simulation environment. Results are collected for three 

versions of the simulation, namely 

• The uncoded version 

• Viterbi Decoding without look-ahead 

• Viterbi Decoding with Look-ahead 

The parameters chosen for the simulation are listed in Table 2. For 

simplicity the results are shown for K=3, r=1/2, M=1. The logic 

behind is that if it’s true for the simple case than depending on our 

requirement we can extend the parameters to suit our needs. 

Another important parameter is the soft-decision decoding, 

although it is also an optimization (over the hard-decision) but its 

effect are not discussed as it has nothing to do with the 

throughput. I am also using block processing of data instead of 

sample by sample processing. With block processing I have all the 

bits that need to be processed, so their branch metrics can be 

computed in the initial stage without waiting for them. This gives 

a lot of freedom for the look-ahead transformation. 

I am not only recording the efficiency in time but also the 

performance of the proposed design. The reason being this may be 

possible that it may be running faster but running poor in the 

performance. In that case the speed will be useless, as it will be 

failing to fulfill its foremost purpose of Forward Error Correction. 

For this a BER comparison is done between the original version 

of VA and the optimized one.  

 

 

for i = 1:length(recieved_input)/2 

 
path_mat1 = path_mt_array(1,1) + br_mat(1,i); 

path_mat2 = path_mt_array(2,1) + br_mat(4,i); 

[best_mat(1,1) state]= min([path_mat1,path_mat2]); 

surv_st(1,1)  = state; 

end 

Figure 5- Part of code w/o Look-Ahead 

 

Figure 4 and Figure 5 shows a portion of the actual codes. One 

can also judge form these snippets that the loop is running for half 

the time in case of look-ahead. And in case of look-ahead a 

comparison is done between four possible options instead of only 

two. 

 

for i = 1:length(recieved_input)/4 

path_mat1 = path_mt_array(1,1) + br_mat(1,2*i-

1)+br_mat(1,2*i); 

 

path_mat2 = path_mt_array(2,1) + br_mat(4,2*i-

1)+br_mat(1,2*i); 

 

path_mat3 = path_mt_array(3,1) + br_mat(3,2*i-

1)+br_mat(4,2*i); 

 

path_mat4 = path_mt_array(4,1) + br_mat(2,2*i-

1)+br_mat(4,2*i); 

 

[best_mat(1,1) state] = 

min([path_mat1,path_mat2,path_mat3,path_mat4]); 

surv_st(1,1)  = state;  

end 

 

Figure 6- Part of code with Look-Ahead 

 

Parameter Value 

Constraint Length K=3 

Data Length 10^5 samples 

Generator 

polynomial 

(7,5)8 

Rate r=1/2 

Look-Ahead step M=1 

Modulation BPSK 

 Block Processing 

 Soft-decision 

 Trace-back decdoing 

Table 1- Simulation Parameters 

   It is also worth mentioning that both the versions of the VA are 

using block processing for a fair comparison. 

6. RESULTS 
Results are presented in this section. The results look very 

encouraging. The reported speed up Table 1, with only one look-

ahead step (M=1) is roughly 50% reduction in execution time.   

 

 

 



 Sequential VA Optimized VA 

Execution Time in 

seconds 

38.3294 20.0305 

Table 2- Simulation Results 

 

The BER performance curve of the different simultaion sare 

shown in Figure. The curve clearly shows that the opimized 

design provides the speed up without any performance loss. The 

optimizaed BER performance is the same as that of the 

unoptimized one. 

 

Figure 7- BER comparison of Actual and Proposed design 

 

7. CONCLUSIONS 
In this project look-ahead technique has been exploited to create 

the desired level of concurrency in the sequential design of Viterbi 

Algorithm. It’s clear from the results that Viterbi decoding can be 

optimized using the Look-Ahead transformation technique to give 

a vectorized output. The choice of look-ahead step is application 

dependent. It’s quite interesting that the decrease in execution 

time is extremely high with only a single look-ahead step. This 

may lead the designers to opt for this approach despite the 

expected large hardware requirements. 

Although this algorithm can be implemented in a few lines of 

code, its storage space increases exponentially with each 

additional level of look-ahead.  Also the computational 

complexity increases exponentially to compute the next set of 

matrices.  For un-optimized VA the look-up table for decoding 

only require one bit of storage while in the case of look-ahead 

implementation the size of look up table increases exponentially 

with the increase of look-ahead step. Therefore, for large levels of 

look-ahead this algorithm would be hard to use.  At the same time, 

the physical hardware needed to implement many levels of look-

ahead would become a limiting time and space constraint. 

8. FUTURE WORK 
In this project I have considered a vectorized high throughput 

implementation of Viterbi decoder in Matlab, the next logical step 

would be to go for a hardware implementation of the proposed 

algorithm. This will be more challenging as while designing the 

optimized VA no consideration has been put on the hardware cost.  

The design considered in this project supports the binary 

convolutional codes only. It will be interesting to investigate the 

design for non binary case. 

From the implementation point of view, the proposed design also 

faces the problem that it leads to high latency for look-ahead ACS 

precomputations. Parhi et al have looked into this matter but still 

more work needed to be done in this regard.  
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