
USB2-SOFT
USB 2.0 DEVICE SIE
VHDL SOURCE CODE OVERVIEW

Overview
USB2-SOFT is the VHDL source code to connect
an FPGA-based USB device to a USB host.
The code supports both high-speed (480 Mbits/s)
and full-speed (12 Mbits/s) connections.

This FPGA code interfaces with a physical layer
transceiver (PHY). The code is compatible with two
industry standard interfaces commonly found in
USB PHYs:

- 12-pin ULPI [2] (example: USB3300 from
SMSC [5])

- 22-pin UTMI
The code is structured so that the ULPI interface is
a wrapper around the UTMI SIE.

The code is a Serial Interface Engine (SIE)
implementing the Device side of the USB 2.0
standard protocol layer [1] including control and
bulk endpoints.

USB2-SOFT does NOT support the following:
Host-side protocol, OTG, low-speed, Interrupt and
Isochronous endpoints.

The component’s very efficient implementation
makes it suitable for instantiation within a small
FPGA. For example, it takes 22% of a small
Spartan-6 XC6SLX16 [3][4].

Block Diagram

USB2
DEVICE
SIE

2* virtual
channels

User
Interface

U
LP

I I
nt

er
fa

ce

ULPI wrapper

U
T

M
I i

nt
er

fa
ce

FPGA

USB2
DEVICE
PHY

to/from
USB
host

USB Device

USB2-SOFT

(*) The code is written for two bi-directional virtual
channels (4 endpoints). Developers can easily
change the number of channels/endpoints by editing
the USB20.vhd source code.

Target Hardware
The code is written in generic VHDL so that it can
be ported to a variety of FPGAs. The code was
developed and tested on a Xilinx Spartan-6
XC6SLX FPGA.

It can be easily ported to any Xilinx Virtex-5,
Virtex-6, Spartan-6, Spartan-3 FPGAs and other
FPGAs capable of running at 60 MHz.

Device Utilization Summary
Device: Xilinx Spartan-6
Number of slices 516
Flip Flops 670
LUTs 1150
RAMB16BWERs 5
DSP48A1s 0
GCLKs 2
DCMs 1

MSS • 845 Quince Orchard Boulevard Ste N • Gaithersburg, Maryland 20878-1676 • U.S.A.
Telephone: (240) 631-1111 Facsimile: (240) 631-1676 www.ComBlock.com

© MSS 2016 Issued 7/27/2016

http://www.mobile-sat.com/

Interfaces

USB_CLK60G
SYNC_RESET
CLK_P

DATA1_IN(7:0)
DATA1_IN_SAMPLE_CLK
DATA1_IN_SAMPLE_CLK_REQ

DATA1_OUT(7:0)
DATA1_OUT_BUFFER_EMPTY
DATA1_OUT_SAMPLE_CLK
DATA1_OUT_SAMPLE_CLK_REQ

DATA2_IN(7:0)
DATA2_IN_SAMPLE_CLK
DATA2_IN_SAMPLE_CLK_REQ

DATA2_OUT(7:0)
DATA2_OUT_BUFFER_EMPTY
DATA2_OUT_SAMPLE_CLK
DATA2_OUT_SAMPLE_CLK_REQ

USB_ULPI_DATA(7:0)
USB_ULPI_STP
USB_UPLI_DIR
USB_ULPI_NXT

CLOCKS

ULPI
PHY

USER
INTERFACE

PHY
INTERFACE

CH1 TX DATA

CH1 RX DATA

CH2 TX DATA

CH2 RX DATA

User Interface
The user interface is synchronous with the user-
supplied processing clock CLK_P. In order to meet
the timing requirements, CLK_P must be defined as
a global clock (i.e. a BUFG output).

CLK_P does not have to be the same as, or be
related to the 60 MHz PHY clock.

Each data stream, whether input or output, follows
the same timing diagram as illustrated below:

Input data is read at
the rising edge of CLK_P

CLK_P

SAMPLE_CLK

DATA

The receiving end
requests another byte

SAMPLE_CLK_REQ

The data source
provides another byte

Each DATA byte is read at the rising edge of
CLK_P when SAMPLE_CLK = ‘1’. In a sense,
SAMPLE_CLK is really an ‘enable’ or ‘valid’
qualifying signal.

The stream data flow is controlled by means of the
SAMPLE_CLK_REQ signal. ‘0’ means that the
receiving end does not have room for any more

data. The data source should not send data unless
SAMPLE_CLK_REQ = ‘1’.

For maximum throughput, 16Kbit elastic buffers
are included in both tx/rx directions at the user
interface. This allows the USB engine to multi-task,
sending data to the PHY while accepting
subsequent data from the user and vice versa.

The USB protocol is invisible to the user. The user
has no control, nor visibility of the data
segmentation into DATA0/DATA1 packets, frame
check sequence (CRC) insertion and removal.

PHY Interface
The PHY interface is synchronous with the PHY-
supplied 60 MHz reference clock USB_CLK60.

Recommendation for best performance:

(a) At the time of PCB layout, connect the
PHY 60 MHz reference clock to a FPGA
global clock GCLK input port.

(b) Inside the FPGA, re-generate the 60 MHz
reference clock through a DCM or PLL
followed by a global buffer BUFG. An
example is available in [6].

The most critical timing in this design is the time it
takes for the USB_ULPI_DIR and
USB_ULPI_NXT input signals to propagate
through the FPGA and generate the appropriate
USB_ULPI_DATA output by the next clock. It is
thus important to define FPGA timing constraints as
follows:

INST "USB_ULPI_NXT" TNM = USB_ULPI_IN;
INST "USB_ULPI_DIR" TNM = USB_ULPI_IN;
TIMEGRP "USB_ULPI_IN" OFFSET = IN 13.666
ns BEFORE USB_CLK60; #3ns at ULPI PHY
output, period 16.6ns

Configuration
There are no run-time configuration parameters.
The two most likely customizations a developer
may be tasked to implement are:
(a) adding/removing endpoints, and
(b) changing the descriptors.

2

Adding/Removing Endpoints
It is quite easy to add or remove USB endpoints (for
example to create an application with more transmit
streams than receive streams). To do so, one must
cut/paste/edit sections of the USB20.vhd
component.

To create an additional bulk-out endpoint, cut and
paste the code between
--// ENDPOINT 2 TRANSFER STATE
MACHINE
and
---//END OF ENDPOINT 2 TRANSFER STATE
MACHINE
then rename the interface from IF0 to IF?.

Likewise, to create an additional bulk-in endpoint,
cut and paste the code between
--// ENDPOINT 3 TRANSFER STATE
MACHINE
and
---//END OF ENDPOINT 3 TRANSFER STATE
MACHINE
then rename the interface from IF0 to IF?.

Changing Descriptors
USB devices report their attributes using
descriptors. Descriptor strings include
manufacturer’s name, product’s name, number of
interfaces and endpoints, etc.

Descriptors are stored in read-only block RAM
according to the following memory map:
0x00 - 0x11 Device descriptor
0x12 - 0x1B Device_Qualifier descriptor
0x1C - 0x52 Configuration descriptor (includes
interface and endpoints)
0x53 - 0x89 Other-speed configuration descriptor
(offset by x37 from configuration descriptor)

0xA0 - 0xA2 String0 descriptor
0xA3 - 0xBC String1 descriptor
0xBD - 0xCE String2 descriptor
0xCF - 0xE4 String3 descriptor
0xE5 - 0xFA String4 descriptor

Descriptors are formatted as specified in the USB
2.0 specifications, section 9.5.

Exclusions
USB2-SOFT does NOT support the following:

 Host-side protocol
 OTG
 low-speed (1 Mbits/s)
 Isochronous endpoints
 Interrupt endpoints

Software Licensing
USB2-SOFT is supplied under the following key
licensing terms:

1. A nonexclusive, nontransferable license to
use the VHDL source code internally, and

2. An unlimited, royalty-free, nonexclusive
transferable license to make and use products
incorporating the licensed materials, solely in
bitstream format, on a worldwide basis.

The complete VHDL/IP Software License
Agreement can be downloaded from
http://www.comblock.com/download/softwarelicense.pdf

Reference documents

[1] Universal Serial Bus Specification, Revision
2.0, April 27,2000

 [2] UTMI+ Low Pin Interface (ULPI) Specification
Revision 1.1 October 20, 2004

 [3] ComBlock COM-1600 FPGA + ARM +
USB2.0+ DDR2 + NAND development platform
www.comblock.com/com1600.html

[4] COM-1600 development platform schematics

[5] SMSC USB3300 Hi-Speed USB Host,Device or
OTG PHY with ULPI Low Pin Interface

[6] COM-1600 VHDL code template

3

http://www.comblock.com/com1600.html
http://www.comblock.com/download/softwarelicense.pdf

Configuration Management
The current software revision rev is 2. The
software comprises:

[a] VHDL source code in directory
USB20_rev\src

[b] Xilinx .ucf constraint statements (to be copied to
the project top level .ucf constraint file)
USB20_rev\src\ USB20ULPI.ucf

[c] synthesized .ngc component:
USB20_rev\bin\USB20ULPI.ngc

where rev is the current revision number.

 VHDL development environment
The VHDL software was developed using the
following development environment:

(a) Xilinx ISE 13.4 with XST as synthesis tool
and ISim simulator.

(b) COM-1600 Spartan-6 FPGA development
platform, including the USB3300 PHY

Ready-to-use Hardware
The binary component (.ngc) is freely available for
use on the following Comblock hardware modules:

 COM-1600 FPGA + ARM + DDR2 +
NAND + USB2 development platform

 COM-1500 FPGA + ARM + DDR2
SODIMM development platform

The schematics are available in this CD.

Xilinx-specific code
The VHDL source code is written in generic VHDL
with few Xilinx primitives. No Xilinx CORE is
used. The Xilinx primitives are:

- IOBUF
- IBUFG
- BUFG (global clocks)
- RAM block: RAMB16_S9_S9

Top-Level VHDL hierarchy

The code is stored with one, and only one,
component per file.

The root entity (highlighted above) is
USB20ULPI.vhd. It is a wrapper that converts the
natural PHY interface from UTMI to the lower-pin
count ULPI. This ULPI wrapper can be removed if
the FPGA interfaces with the external USB PHY
over a UTMI interface.

The root also includes the following components:

- USB20.vhd is the Serial Interface Engine
for a USB device. It can interface directly
with a PHY over a UTMI interface.

- The CRC5.vhd verifies the CRC for
incoming USB tokens.

- The CRC16.vhd computes the 16-bit CRC
to be appended to tx packets and to check
rx. The CRC computation is performed 8
data bits at a time.

Test Environment
A testbench (tbusb20ulpi.vhd) together with a
simple PHY simulator (USB_PHY_SIM.vhd) are
included. This allows to simulate the SIE and ULPI
interface during high-speed negotiation and token
exchange. All ULPI transactions are simulated:
receive command, transmit command, data
transmit, data receive, register read and register
write.

To shorten the simulation, the constant
SIMULATION in usb20.vhd should be set to ‘1’.

4

Clock / Timing

The software uses two main clocks:

- a 60 MHz reference clock (USB_CLK60G)
generated by the PHY and ‘cleaned’
through a DCM or PLL.

- A user-selected processing clock (CLK_P)
to send and receive data from the user
application.

5

State Machine

The state machine is described by the SDL flowcharts below:

0

Device detached

VBUS_SENSE
changes to '1'

T1
80ms

1 Device attached

Initial conditions at power up:
XCVR_SELECT = 0
TERM_SELECT = 0
OPMODE = 00 (normal)
TXVALID = 0
DATA_OUT = Zs
SPEED_BEFORE_SUS = '0'

T1

Reset
device & PHY

1 CLK wide pulse

VBUS_SENSE = 1?No

XCVR_SELECT <= '1'
TERM_SELECT <= '1'

T1
102 ms

2

Debounce

go to FS

6

2 Debounce

T1

3 FS_ACTIVE

Wait for reset or suspend from upstream

LINESTATE =
J for >3ms

LINESTATE =
SE0 for > 2.5us

RESET

Reset
device & PHY 1 CLK wide pulse

OPMODE <= "10"
TXVALID <= '1'

DATA <= (others => '0')
XCRVSELECT <= '0'

disable bit stuffing
go to HS mode
send K (chirp)

T1 1.1 ms

7 Send Chirp K

T1

5

SUSPEND

1ms min + margin
66000 clock cycles

SPEED_BEFORE_SUS = '1'

7

OPMODE <= "00"
TXVALID <= '0'

still in HS mode
stop transmiting K chirp

T1 0.1 ms
Wait until we can assert
Chirp K from upstream

8 Wait for port chirp

T1

9

T1

XCRVSELECT <= '1'

check for chirp

revert to FS

FS_active

T1 2 ms

CHIRP_STATE
= 3

HS_active

TERMSELECT <= '0'

4

3

T1 100 ms

10

T1USB_SOF

8

0

SPEED_STATE = 9 check chirp

1

chirp_count =
chirp_count + 1

Chirp_count = 6

2

34

Yes

chirp_count =
chirp_count + 1

Chirp_count = 6

LINESTATE
= K

LINESTATE
= J

Yes

No

No
SE0 for
2.5 us

SPEED_STATE
/= 9

4

SE0 for
2.5 us

SPEED_STATE
/= 9

SPEED_STATE
/= 9

0

chirp_count = 0

CHIRP_STATE
Idle = 0
Detect K = 1
Detect J = 2
Chirp_valid = 3
Chirp_invalid = 4

9

5SUSPEND

LINESTATE
= SE0 or K

T1 = 5.6 ms

11

T1

resume check

(already in FS mode)

Reset
device & PHY

OPMODE <= "10"
TXVALID <= '1'

DATA <= (others => '0')
XCRVSELECT <= '0'

T1 1.1 ms

7

LINESTATE
= SE0

5

Suspend

LINESTATE
= K

T1 =100 ms

12

T1 LINESTATE
= SE0

SPEED_BEFORE
_SUS

await SE0

3

'1''0'

XCRVSELECT <= '0'
TERMSELECT <= '0'

4

Yes Yes

5 5No No
LINESTATE

= J

Suspend Suspend

Send chirp K

HS_active

FS_active

10

4

SE0 for > 3 ms

XCRVSELECT <= '1'
TERMSELECT <= '1' go to FS mode

T1 0.5 ms

6 reset_suspend

T1

LINESTATE J SE0

Reset
device & PHY

OPMODE <= "10"
TXVALID <= '1'

DATA <= (others => '0')
XCRVSELECT <= '0'

T1 1.1 ms

7

5

HS_active

SPEED_BEFORE_SUS = '0'

Suspend

Send chirp K

11

Valid SETUP

1

CRC16
valid?

2

CONTROL PIPE

PID valid
CRC5 valid

Await DATA0

setup complete

await ACK transmit

ACK
sent

Initialize datax flags for tx and rx to 0

Send ACK

toggle datax flag on rx
accept data

Data0Data1

toggle datax tx

3

any state

12

if data
available
to send

5

6

Datax tx done

10

Valid INValid ACK

Control
Write

DATAx

4

Valid
OUT

Valid
IN

valid PID
valid CRC5

valid PID
valid CRC5

Send ACK

toggle datax flag on rx
accept data

sequence
matches

flag?

No

Yes

7

ACK
sent

8

out complete

Yes

No

Send zero
length
packet

Send Data x

data transmitted
wait for ack

12

IN complete

if data
available
to send

5

Yes

Send Data x

11

NAK sent

12

Send NAK

No

3

Control write

await data x

await ack transmit

go to status await data x transmit

toggle data x flag on tx

await data x transmit

await NAK transmit

in complete

Valid
CRC16

No

Yes

setup complete

13

8

Control
Write 4

Valid
OUT

Valid
IN

valid PID
valid CRC5

valid PID
valid CRC5

Send zero length packet

6

9

zero length
pack sent

Valid
ACK

0

valid IN

always DATA1

Control
Read

Valid
IN

Valid
OUT

valid PID
valid CRC5

valid PID
valid CRC5

14

ACK
sent

0

always DATA1

12

if data
available
to send

5

Yes

Send Data x

Data1

Send ACK

11

Send NAK

No

in complete

await NAK transmit await data x transmit

13 status

await ack transmit

await datax

wait for packet transmit

out complete

Valid PING
PID valid
CRC5 valid

Send
ACK

State Previously in

17

ACK
sent

14

DATAx

Send ACK

sequence
matches

flag?

No

Yes
space in

pipe?

Yes

No

Send NAK

2

ACK
sent

NAK
sent

4

await ack transmit next space
in pipe

Valid
CRC16

No

Yes

Yes

Send NYET

NYET
sent

3

0

0

await NAK transmit

await NYET transmit

0

Valid OUT

1

toggle datax flag
accept data

0

data x flag = 0

Valid
Out

No

15

Valid PING
PID valid
CRC5 valid

Send
ACK

Send
NAK

Space in
the pipe?

Yes No

State Previously in

5 6

ACK
sent

NAK
sent

16

0

Valid IN

NACK_DONE

0

if data
available
to send

12

Datax tx done

3

Valid ACK

YesNo

Send Data x

data transmitted
wait for ack

await data x transmit

toggle data x flag
accept data

No data to transmit

Send NAK

0

Valid IN

data x flag = 0

17

ComBlock Compatibility List
FPGA development platform
COM-1600 FPGA + ARM + DDR2 + USB2 + NAND development platform
COM-1500 FPGA + DDR2 SODIMM socket + ARM development platform

ComBlock Ordering Information

USB2-SOFT USB2.0 DEVICE SIE, VHDL SOURCE CODE

MSS • 845-N Quince Orchard Boulevard•
Gaithersburg, Maryland 20878-1676 • U.S.A.
Telephone: (240) 631-1111
Facsimile: (240) 631-1676
E-mail: sales@comblock.com

18

http://www.comblock.com/com1500.html
http://www.comblock.com/com1600.html

	USB2-SOFT USB 2.0 DEVICE SIE VHDL SOURCE CODE OVERVIEW
	Overview
	Block Diagram
	Target Hardware
	Device Utilization Summary

	Interfaces
	User Interface
	PHY Interface

	Configuration
	Adding/Removing Endpoints
	Changing Descriptors

	Exclusions
	Software Licensing
	Reference documents
	Configuration Management
	VHDL development environment
	Ready-to-use Hardware
	Xilinx-specific code
	Top-Level VHDL hierarchy
	Test Environment
	Clock / Timing
	State Machine
	ComBlock Compatibility List
	ComBlock Ordering Information

